Back to Search
Start Over
ASCL2 reciprocally controls key trophoblast lineage decisions during hemochorial placenta development
- Source :
- Proc Natl Acad Sci U S A
- Publication Year :
- 2021
- Publisher :
- Proceedings of the National Academy of Sciences, 2021.
-
Abstract
- Invasive trophoblast cells are critical to spiral artery remodeling in hemochorial placentation. Insufficient trophoblast cell invasion and vascular remodeling can lead to pregnancy disorders including preeclampsia, preterm birth, and intrauterine growth restriction. Previous studies in mice identified achaete-scute homolog 2 (ASCL2) as essential to extraembryonic development. We hypothesized that ASCL2 is a critical and conserved regulator of invasive trophoblast cell lineage development. In contrast to the mouse, the rat possesses deep intrauterine trophoblast cell invasion and spiral artery remodeling similar to human placentation. In this study, we investigated invasive/extravillous trophoblast (EVT) cell differentiation using human trophoblast stem (TS) cells and a loss-of-function mutant Ascl2 rat model. ASCL2 transcripts are expressed in the EVT column and junctional zone, which represent tissue sources of invasive trophoblast progenitor cells within human and rat placentation sites, respectively. Differentiation of human TS cells into EVT cells resulted in significant up-regulation of ASCL2 and several other transcripts indicative of EVT cell differentiation. Disruption of ASCL2 impaired EVT cell differentiation, as indicated by cell morphology and transcript profiles. RNA sequencing analysis of ASCL2-deficient trophoblast cells identified both down-regulation of EVT cell-associated transcripts and up-regulation of syncytiotrophoblast-associated transcripts, indicative of dual activating and repressing functions. ASCL2 deficiency in the rat impacted placental morphogenesis, resulting in junctional zone dysgenesis and failed intrauterine trophoblast cell invasion. ASCL2 acts as a critical and conserved regulator of invasive trophoblast cell lineage development and a modulator of the syncytiotrophoblast lineage.
- Subjects :
- 0301 basic medicine
Spiral artery
Cellular differentiation
Morphogenesis
Biology
Cell morphology
Rats, Sprague-Dawley
03 medical and health sciences
0302 clinical medicine
Syncytiotrophoblast
Pregnancy
Basic Helix-Loop-Helix Transcription Factors
medicine
Animals
Humans
Cell Lineage
Progenitor cell
reproductive and urinary physiology
030219 obstetrics & reproductive medicine
Multidisciplinary
Stem Cells
Placentation
Trophoblast
Cell Differentiation
Biological Sciences
female genital diseases and pregnancy complications
Rats
Trophoblasts
Cell biology
030104 developmental biology
medicine.anatomical_structure
embryonic structures
Female
Subjects
Details
- ISSN :
- 10916490 and 00278424
- Volume :
- 118
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences
- Accession number :
- edsair.doi.dedup.....3ed4bde041549017c882d1cd24eff3d2