Back to Search Start Over

Quantum circuits with many photons on a programmable nanophotonic chip

Authors :
Haoyu Qi
Soran Jahangiri
Leonhard Neuhaus
A. Goussev
Sae Woo Nam
V. D. Vaidya
Juan Miguel Arrazola
Jeremy Swinarton
M. Menotti
A. Repingon
K. Tan
Nathan Killoran
Kamil Bradler
Lukas G. Helt
Ish Dhand
P. Tan
Blair Morrison
Thomas R. Bromley
Theodor Isacsson
Ville Bergholm
Jonathan Lavoie
Z. Vernon
Thomas Gerrits
Daiqin Su
Matthew J. Collins
Dylan H. Mahler
Zeid Zabaneh
Maria Schuld
A. Fumagalli
Robert B. Israel
Shreya P. Kumar
Yanbao Zhang
Josh Izaac
Antal Száva
J. Hundal
Krishna Kumar Sabapathy
Nicolás Quesada
Adriana E. Lita
Rafal Janik
Source :
Nature. 591:54-60
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

Growing interest in quantum computing for practical applications has led to a surge in the availability of programmable machines for executing quantum algorithms1,2. Present-day photonic quantum computers3–7 have been limited either to non-deterministic operation, low photon numbers and rates, or fixed random gate sequences. Here we introduce a full-stack hardware−software system for executing many-photon quantum circuit operations using integrated nanophotonics: a programmable chip, operating at room temperature and interfaced with a fully automated control system. The system enables remote users to execute quantum algorithms that require up to eight modes of strongly squeezed vacuum initialized as two-mode squeezed states in single temporal modes, a fully general and programmable four-mode interferometer, and photon number-resolving readout on all outputs. Detection of multi-photon events with photon numbers and rates exceeding any previous programmable quantum optical demonstration is made possible by strong squeezing and high sampling rates. We verify the non-classicality of the device output, and use the platform to carry out proof-of-principle demonstrations of three quantum algorithms: Gaussian boson sampling, molecular vibronic spectra and graph similarity8. These demonstrations validate the platform as a launchpad for scaling photonic technologies for quantum information processing. A system for realizing many-photon quantum circuits is presented, comprising a programmable nanophotonic chip operating at room temperature, interfaced with a fully automated control system.

Details

ISSN :
14764687 and 00280836
Volume :
591
Database :
OpenAIRE
Journal :
Nature
Accession number :
edsair.doi.dedup.....3ebe575969f2b2385705d53b0ed48a6a