Back to Search Start Over

Improvements of Population Fitness and Trophic Status of a Benthic Predatory Fish Following a Trawling Ban

Authors :
Lily S. R. Tao
Yanny K. Y. Mak
Valerie C. M. Ho
Ronia C.-t. Sham
Tommy T. Y. Hui
Danny C. P. Lau
Kenneth M. Y. Leung
Source :
Frontiers in Marine Science, Vol 8 (2021)
Publication Year :
2021
Publisher :
Frontiers Media S.A., 2021.

Abstract

Trawl fisheries have been shown to cause overfishing and destruction of benthic habitats in the seabed. To mitigate these impacts, a trawling ban has been enforced in Hong Kong waters since December 31, 2012 to rehabilitate the ecosystem and enhance fisheries resources. Previous studies demonstrated that reduced trawling activities would increase the heterogeneity of benthic habitats, thereby enhancing species richness and abundance of benthic fauna and providing more prey resources for predatory fishes. This study aimed to test a hypothesis that the population and trophic dynamics of the Bartail flathead Platycephalus indicus, a heavily fished benthic predatory fish, at inner and outer Tolo Channel of Hong Kong (i.e., EI and EO) improved with increases in their body size, abundance, biomass, trophic niche, and trophic position after the trawl ban. Samples were collected from trawl surveys before and after the trawl ban to compare the pre-ban and post-ban populations of P. indicus from EI and EO. Body size, abundance, and biomass were assessed in 2004, 2013–2014, and 2015–2016, whereas trophic niche and trophic position were analyzed based on stable isotopes of fish samples collected in dry season of 2012, 2015, and 2018. Following the trawl ban, the abundance and biomass of P. indicus increased in EO, with body size increased in EI. Furthermore, as indicated by the results of stable isotope analysis (SIA) on their tissues and prey items, trophic niche, and trophic position of P. indicus increased in EI and EO, respectively. Our study demonstrated that the trawl ban had promoted the recovery of a predatory fish population through restoring size structure and trophic dynamics.

Details

Language :
English
ISSN :
22967745
Volume :
8
Database :
OpenAIRE
Journal :
Frontiers in Marine Science
Accession number :
edsair.doi.dedup.....3eaa239b167b8894783b8a80b36d2c07