Back to Search Start Over

Bayesian optimization for mixed variables using an adaptive dimension reduction process: applications to aircraft design

Authors :
Saves, Paul
Nguyen Van, Eric
Bartoli, Nathalie
Diouane, Youssef
Christophe, David
Lefebvre, Thierry
Morlier, Joseph
Defoort, Sébastien
Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)
ONERA / DTIS, Université de Toulouse [Toulouse]
ONERA-PRES Université de Toulouse
Institut Clément Ader (ICA)
Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)
Office National d'Etudes et Recherches Aérospatiales - ONERA (FRANCE)
Département Conception et conduite des véhicules Aéronautiques et Spatiaux - DCAS (Toulouse, France)
Source :
AIAA SCITECH 2022 Forum, AIAA SciTech 2022, AIAA SciTech 2022, Jan 2022, San Diego, United States. ⟨10.2514/6.2022-0082⟩
Publication Year :
2022
Publisher :
Zenodo, 2022.

Abstract

Multidisciplinary design optimization methods aim at adapting numerical optimization techniques to the design of engineering systems involving multiple disciplines. In this context, a large number of mixed continuous, integer and categorical variables might arise during the optimization process and practical applications involve a large number of design variables. Recently, there has been a growing interest in mixed variables constrained Bayesian optimization but most existing approaches severely increase the number of the hyperparameters related to the surrogate model. In this paper, we address this issue by constructing surrogate models using less hyperparameters. The reduction process is based on the partial least squares method. An adaptive procedure for choosing the number of hyperparameters is proposed. The performance of the proposed approach is confirmed on analytical tests as well as two real applications related to aircraft design. A significant improvement is obtained compared to genetic algorithms. https://arc.aiaa.org/doi/pdf/10.2514/6.2022-0082

Details

Database :
OpenAIRE
Journal :
AIAA SCITECH 2022 Forum, AIAA SciTech 2022, AIAA SciTech 2022, Jan 2022, San Diego, United States. ⟨10.2514/6.2022-0082⟩
Accession number :
edsair.doi.dedup.....3ea5bf10670fbf5931203eda4fa1249e
Full Text :
https://doi.org/10.5281/zenodo.6447923