Back to Search Start Over

Mechanics of standing and crouching sprint starts

Authors :
Jean Slawinski
Valery Bocquet
Nicolas Termoz
Alice Bonnefoy-Mazure
Nicolas Houel
Kevin Lissajoux
Centre de Recherche sur le Sport et le Mouvement (CeRSM)
Université Paris Nanterre (UPN)
Université de Reims Champagne-Ardenne (URCA)
Laboratoire de Cinésiologie, Willy Taillard Hopital Cantonal
Université de Genève (UNIGE)
Département d'études et recherches
Fédération Française de Natation (FFN)
Institut national du sport et de l'éducation physique (INSEP)
Performance, Santé, Métrologie, Société - EA 7507 (PSMS)
Université de Genève = University of Geneva (UNIGE)
Source :
Journal of Sports Sciences, Journal of Sports Sciences, Taylor & Francis, 2016, 35 (9), pp.858-865. ⟨10.1080/02640414.2016.1194525⟩, Journal of Sports Sciences, Taylor & Francis, 2016, pp.1-8. ⟨10.1080/02640414.2016.1194525⟩, Journal of Sports Sciences, Vol. 35, No 9 (2017) pp. 858-865, Journal of Sports Sciences, 2016, 35 (9), pp.858-865. ⟨10.1080/02640414.2016.1194525⟩, Journal of Sports Sciences, 2016, pp.1-8. ⟨10.1080/02640414.2016.1194525⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

Epub ahead of print; The aim of this study was to compare the kinetic and kinematic parameters of standing and crouch sprint starts. Parallel starts (PS), false starts (FS), jump starts (JS) and crouch starts (3PS) were compared. Eighteen participants performed each start on a force plate and six infrared cameras captured the three-dimensional coordinates of 36 retro-reflective markers. Performance during a five-metre sprint (T5m) was analysed. Duration of the start phase (Tstart), mean values of horizontal and total ground reaction forces (GRFs) (Fx_mean and Ftot_mean), ratio of force (RF), maximal power (Pmax) and kinetic energy (KE) of each limb were calculated. Significant differences were found for T5m, Tstart, KE, Pmax, Fx_mean, Ftot_mean and RF for the crouch start compared to the other starts (P ≤q 0.05). Significant correlations were found between T5m and Tstart (r = 0.59; P ≤q 0.001), and T5m and Pmax, Fx_mean and RF (-0.73 ≤q r ≤q -0.61; P ≤q 0.001). To conclude, the crouch start resulted in the best performance because Tstart was shorter, producing greater Pmax, Fx_mean with a more forward orientation of the resultant force. Greater KE of the trunk in each start condition demonstrated the role of the trunk in generating forward translation of the centre of mass (CM).

Details

Language :
English
ISSN :
02640414 and 1466447X
Database :
OpenAIRE
Journal :
Journal of Sports Sciences, Journal of Sports Sciences, Taylor & Francis, 2016, 35 (9), pp.858-865. ⟨10.1080/02640414.2016.1194525⟩, Journal of Sports Sciences, Taylor & Francis, 2016, pp.1-8. ⟨10.1080/02640414.2016.1194525⟩, Journal of Sports Sciences, Vol. 35, No 9 (2017) pp. 858-865, Journal of Sports Sciences, 2016, 35 (9), pp.858-865. ⟨10.1080/02640414.2016.1194525⟩, Journal of Sports Sciences, 2016, pp.1-8. ⟨10.1080/02640414.2016.1194525⟩
Accession number :
edsair.doi.dedup.....3ea3b3689914c7325cec09edb72bcf55