Back to Search
Start Over
Multi-Phase EMTR-based Fault Location Method Using Direct Convolution Considering Frequency-Dependent Parameters and Lossy Ground
- Publication Year :
- 2022
-
Abstract
- Many Electromagnetic time reversal (EMTR)-based fault location methods were proposed in the latest decade. In this paper, we briefly review the EMTR-based fault location method using direct convolution (EMTR-conv) and generalize it to multi-phase transmission lines. Moreover, noting that the parameters of real transmission lines are frequency-dependent, while constant-parameters were often used during the reverse process of EMTR-based methods in the previous studies, we investigate the influence of this simplification to the fault location performance by considering frequency-dependent parameters and lossy ground in the forward process which shows the location error increases as the distance between the observation point and the fault position increases, especially when the ground resistivity is high. Therefore, we propose a correction method to reduce the location error by using double observation points. Numerical experiments are carried out in a 3-phase 300-km transmission line considering different ground resistivities, fault types and fault conditions, which shows the method gives good location errors and works efficiently via direct convolution of the signals collected from the fault and the pre-stored calculated transient signals.
- Subjects :
- Signal Processing (eess.SP)
Computational Engineering, Finance, and Science (cs.CE)
FOS: Computer and information sciences
FOS: Electrical engineering, electronic engineering, information engineering
Electrical Engineering and Systems Science - Signal Processing
Computer Science - Computational Engineering, Finance, and Science
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....3ea31d800eee4b35f76aaac0efc2a977