Back to Search
Start Over
Observational Inferences of Lateral Eddy Diffusivity in the Halocline of the Beaufort Gyre
- Source :
- MIT Web Domain
- Publication Year :
- 2017
- Publisher :
- American Geophysical Union (AGU), 2017.
-
Abstract
- Using Ekman pumping rates mediated by sea ice in the Arctic Ocean's Beaufort Gyre (BG), the magnitude of lateral eddy diffusivities required to balance downward pumping is inferred. In this limit—that of vanishing residual-mean circulation—eddy-induced upwelling exactly balances downward pumping. The implied eddy diffusivity varies spatially and decays with depth, with values of 50–400 m[superscript 2]/s. Eddy diffusivity estimated using mixing length theory applied to BG mooring data exhibits a similar decay with depth and range of values from 100 m[superscript 2]/s to more than 600 m[superscript 2]/s. We conclude that eddy diffusivities in the BG are likely large enough to balance downward Ekman pumping, arresting the deepening of the gyre and suggesting that eddies play a zero-order role in buoyancy and freshwater budgets of the BG.<br />National Science Foundation (U.S.) (Award 1603557)
- Subjects :
- 010504 meteorology & atmospheric sciences
Beaufort Gyre
010505 oceanography
Halocline
01 natural sciences
Eddy diffusion
Physics::Geophysics
Physics::Fluid Dynamics
Geophysics
Oceanography
13. Climate action
Ekman transport
General Earth and Planetary Sciences
14. Life underwater
Geology
Physics::Atmospheric and Oceanic Physics
0105 earth and related environmental sciences
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- MIT Web Domain
- Accession number :
- edsair.doi.dedup.....3e86ac886a8d5371705436f49b30765f