Back to Search
Start Over
CXCR3 determines strain susceptibility to murine cerebral malaria by mediating T lymphocyte migration toward IFN-gamma-induced chemokines
- Source :
- European journal of immunology. 38(4)
- Publication Year :
- 2008
-
Abstract
- Cerebral malaria (CM) results from the binding of infected erythrocytes and leukocytes to brain endothelia. The precise mechanisms underlying lymphocyte recruitment and activation in CM remain unclear. Therefore, the expression of various chemokines was quantified in brains of mice infected with Plasmodium berghei ANKA (PbA). Several chemokines attracting monocytes and activated T-lymphocytes were expressed at high levels. Their expression was almost completely abrogated in IFN-gamma ligand and receptor KO mice, indicating that IFN-gamma is an essential chemokine inducer in vivo. Surprisingly, the expression levels of chemokines, IFN-gamma and also adhesion molecules in the brain were not lower in CM-resistant Balb/c and DBA/2 mice compared to CM-sensitive C57BL/6 and DBA/1 mice, although T lymphocyte sequestration in the brain was significantly less in CM-resistant than in CM-sensitive mice. This difference correlated with a higher up-regulation of the CXC chemokine receptor (CXCR)-3 on splenic T cells and a higher chemotactic response to IFN-gamma-inducible protein-10 (IP-10) in C57BL/6 compared to Balb/c mice. In conclusion, parasite-induced IFN-gamma in the brain results in high local expression levels of specific chemokines for monocytes and lymphocytes. The strain-dependent susceptibility to develop CM is more related to the expression of CXCR3 in circulating leukocytes than to the chemokine expression levels in the brain.
- Subjects :
- Chemokine
Chemokine CXCL6
Receptors, CXCR3
Plasmodium berghei
Lymphocyte
T-Lymphocytes
Immunology
Malaria, Cerebral
CXCR3
Ligands
Monocytes
Interferon-gamma
Mice
Cell Movement
medicine
Immunology and Allergy
Animals
CXC chemokine receptors
Cells, Cultured
Receptors, Interferon
biology
Macrophages
Chemotaxis
T lymphocyte
biology.organism_classification
Chemokine CXCL12
Survival Rate
medicine.anatomical_structure
Gene Expression Regulation
biology.protein
Chemokines
Cell Adhesion Molecules
Spleen
Subjects
Details
- ISSN :
- 00142980
- Volume :
- 38
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- European journal of immunology
- Accession number :
- edsair.doi.dedup.....3e70b650d10bb2aaad2d2f1747efd50f