Back to Search Start Over

Crystal structure of 2C helicase from enterovirus 71

Authors :
Zhendong Zhao
Juan Tian
Bei Wang
Sheng Cui
Hongxin Guan
Bo Qin
Justyna Aleksandra Wojdyla
Meitian Wang
Source :
Science Advances
Publication Year :
2017
Publisher :
American Association for the Advancement of Science (AAAS), 2017.

Abstract

Structure of EV71 2C unveils the structural basis of the functional mechanism of carboxyl terminus–mediated self-oligomerization.<br />Enterovirus 71 (EV71) is the major pathogen responsible for outbreaks of hand, foot, and mouth disease. EV71 nonstructural protein 2C participates in many critical events throughout the virus life cycle; however, its precise role is not fully understood. Lack of a high-resolution structure made it difficult to elucidate 2C activity and prevented inhibitor development. We report the 2.5 Å–resolution crystal structure of the soluble part of EV71 2C, containing an adenosine triphosphatase (ATPase) domain, a cysteine-rich zinc finger with an unusual fold, and a carboxyl-terminal helical domain. Unlike other AAA+ ATPases, EV71 2C undergoes a carboxyl terminus–mediated self-oligomerization, which is dependent on a specific interaction between the carboxyl-terminal helix of one monomer and a deep pocket formed between the ATPase and the zinc finger domains of the neighboring monomer. The carboxyl terminus–mediated self-oligomerization is fundamental to 2C ATPase activity and EV71 replication. Our findings suggest a strategy for inhibition of enterovirus replication by disruption of the self-oligomerization interface of 2C.

Details

ISSN :
23752548
Volume :
3
Database :
OpenAIRE
Journal :
Science Advances
Accession number :
edsair.doi.dedup.....3e47e5d12ba847c79618aa4a1adae38a