Back to Search
Start Over
Complexes of Alkylene-Linked Tacrine Dimers with Torpedo californica Acetylcholinesterase: Binding of Bis(5)-tacrine Produces a Dramatic Rearrangement in the Active-Site Gorge
- Source :
- Journal of Medicinal Chemistry. 49:5491-5500
- Publication Year :
- 2006
- Publisher :
- American Chemical Society (ACS), 2006.
-
Abstract
- The X-ray crystal structures were solved for complexes with Torpedo californica acetylcholinesterase of two bivalent tacrine derivative compounds in which the two tacrine rings were separated by 5- and 7-carbon spacers. The derivative with the 7-carbon spacer spans the length of the active-site gorge, making sandwich interactions with aromatic residues both in the catalytic anionic site (Trp84 and Phe330) at the bottom of the gorge and at the peripheral anionic site near its mouth (Tyr70 and Trp279). The derivative with the 5-carbon spacer interacts in a similar manner at the bottom of the gorge, but the shorter tether precludes a sandwich interaction at the peripheral anionic site. Although the upper tacrine group does interact with Trp279, it displaces the phenyl residue of Phe331, thus causing a major rearrangement in the Trp279-Ser291 loop. The ability of this inhibitor to induce large-scale structural changes in the active-site gorge of acetylcholinesterase has significant implications for structure-based drug design because such conformational changes in the target enzyme are difficult to predict and to model.
- Subjects :
- Models, Molecular
Molecular model
Protein Conformation
Stereochemistry
Dimer
Alkenes
Crystallography, X-Ray
Torpedo
law.invention
chemistry.chemical_compound
law
Drug Discovery
Hydrolase
medicine
Animals
Binding Sites
Molecular Structure
biology
Chemistry
Active site
Acetylcholinesterase
Enzyme inhibitor
Tacrine
biology.protein
Molecular Medicine
Cholinesterase Inhibitors
Crystallization
Dimerization
medicine.drug
Subjects
Details
- ISSN :
- 15204804 and 00222623
- Volume :
- 49
- Database :
- OpenAIRE
- Journal :
- Journal of Medicinal Chemistry
- Accession number :
- edsair.doi.dedup.....3e33b98ed6f59ba3ec9ad46ca6ca24bb
- Full Text :
- https://doi.org/10.1021/jm060164b