Back to Search Start Over

Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRγ–Syk–Card9–dependent innate immune activation

Authors :
Antje Heit
Gordon D. Brown
Olaf Groß
Roland Lang
Katrin Finger
Hermann Wagner
Hanne Schoenen
Anna Babiak
Jürgen Ruland
Else Marie Agger
Christoph Hölscher
Falk Nimmerjahn
Kerstin Werninghaus
Attila Mócsai
Carsten J. Kirschning
Harald Dietrich
Jörg Mages
Peter Andersen
Source :
The Journal of Experimental Medicine
Publication Year :
2009
Publisher :
The Rockefeller University Press, 2009.

Abstract

Novel vaccination strategies against Mycobacterium tuberculosis (MTB) are urgently needed. The use of recombinant MTB antigens as subunit vaccines is a promising approach, but requires adjuvants that activate antigen-presenting cells (APCs) for elicitation of protective immunity. The mycobacterial cord factor Trehalose-6,6-dimycolate (TDM) and its synthetic analogue Trehalose-6,6-dibehenate (TDB) are effective adjuvants in combination with MTB subunit vaccine candidates in mice. However, it is unknown which signaling pathways they engage in APCs and how these pathways are coupled to the adaptive immune response. Here, we demonstrate that these glycolipids activate macrophages and dendritic cells (DCs) via Syk–Card9–Bcl10–Malt1 signaling to induce a specific innate activation program distinct from the response to Toll-like receptor (TLR) ligands. APC activation by TDB and TDM was independent of the C-type lectin receptor Dectin-1, but required the immunoreceptor tyrosine-based activation motif–bearing adaptor protein Fc receptor γ chain (FcRγ). In vivo, TDB and TDM adjuvant activity induced robust combined T helper (Th)-1 and Th-17 T cell responses to a MTB subunit vaccine and partial protection against MTB challenge in a Card9-dependent manner. These data provide a molecular basis for the immunostimulatory activity of TDB and TDM and identify the Syk–Card9 pathway as a rational target for vaccine development against tuberculosis.

Details

Language :
English
ISSN :
15409538 and 00221007
Volume :
206
Issue :
1
Database :
OpenAIRE
Journal :
The Journal of Experimental Medicine
Accession number :
edsair.doi.dedup.....3e30a8817f04e29c8567fa3827e8dd8a