Back to Search Start Over

Gut microbiome functionality might be associated with exercise tolerance and recurrence of resected early-stage lung cancer patients

Authors :
Virag Hollosi
Zsolt Megyesfalvi
Balazs Dome
Edit Dulka
Yueqiong Ni
Andrea Marfil-Sánchez
Gabriella Gálffy
János Varga
Glen J. Weiss
Bastian Seelbinder
Zoltan Lohinai
Judit Berta
Gianni Panagiotou
Source :
PLoS ONE, PLoS ONE, Vol 16, Iss 11 (2021), PLoS ONE, Vol 16, Iss 11, p e0259898 (2021)
Publication Year :
2021
Publisher :
Public Library of Science, 2021.

Abstract

Impaired exercise tolerance and lung function is a marker for increased mortality in lung cancer patients undergoing lung resection surgery. Recent data suggest that the gut-lung axis regulates systemic metabolic and immune functions, and microbiota might alter exercise tolerance. Here, we aimed to evaluate the associations between gut microbiota and outcomes in lung cancer patients who underwent lung resection surgery. We analysed stool samples, from 15 early-stage lung cancer patients, collected before and after surgical resection using shotgun metagenomic and Internal Transcribed Spacer (ITS) sequencing. We analysed microbiome and mycobiome associations with post-surgery lung function and cardiopulmonary exercise testing (CPET) to assess the maximum level of work achieved. There was a significant difference, between pre- and post-surgical resection samples, in microbial community functional profiles and several species from Alistipes and Bacteroides genus, associated with the production of SCFAs, increased significantly in abundance. Interestingly, an increase in VO2 coincides with an increase in certain species and the "GABA shunt" pathway, suggesting that treatment outcome might improve by enriching butyrate-producing species. Here, we revealed associations between specific gut bacteria, fungi, and their metabolic pathways with the recovery of lung function and exercise capacity.

Details

Language :
English
ISSN :
19326203
Volume :
16
Issue :
11
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....3e153ad0667ee628686a613d48ed066c