Back to Search Start Over

Reduction of symplectic homeomorphisms

Authors :
Vincent Humilière
Sobhan Seyfaddini
Rémi Leclercq
Institut de Mathématiques de Jussieu (IMJ)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques d'Orsay (LM-Orsay)
Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
Département de Mathématiques et Applications - ENS Paris (DMA)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure - Paris (ENS-PSL)
Leclercq, Rémi
Publication Year :
2014

Abstract

In a previous article, we proved that symplectic homeomorphisms preserving a coisotropic submanifold C, preserve its characteristic foliation as well. As a consequence, such symplectic homeomorphisms descend to the reduction of the coisotropic C. In this article we show that these reduced homeomorphisms continue to exhibit certain symplectic properties. In particular, in the specific setting where the symplectic manifold is a torus and the coisotropic is a standard subtorus, we prove that the reduced homeomorphism preserves spectral invariants and hence the spectral capacity. To prove our main result, we use Lagrangian Floer theory to construct a new class of spectral invariants which satisfy a non-standard triangle inequality.<br />39 pages, to appear in Annales scientifiques de l'\'Ecole normale sup\'erieure

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....3e0659d12f275b36e4d78c472d6984e9