Back to Search Start Over

Versatile New C3-Symmetric Tripodal Tetraphosphine Ligands; Structural Flexibility to Stabilize CuI and RhI Species and Tune Their Reactivity

Authors :
Wassenaar, J.
Siegler, M. A.
Spek, A.L.
de Bruin, B.
Reek, J.N.H.
van der Vlugt, J.I.
Crystal and Structural Chemistry
Sub Crystal and Structural Chemistry
Homogeneous and Supramolecular Catalysis (HIMS, FNWI)
Source :
Inorganic Chemistry, 49(14), 6495-6508. American Chemical Society, Inorganic Chemistry, 49(14), 6495. American Chemical Society
Publication Year :
2010
Publisher :
American Chemical Society (ACS), 2010.

Abstract

The high-yielding synthesis and detailed characterization of two well-defined, linkage isomeric tripodal, tetradentate all-phosphorus ligands 1-3 is described. Coordination to Cu(I) resulted in formation of complexes 4-6, for which the molecular structures indicate overall tridentate coordination to the copper atom in the solid state, with one dangling peripheral phosphine. The solution studies suggest fast exchange between the three phosphine side-arms. For these new Cu(I) complexes, preliminary catalytic activity in the cyclopropanation of styrene with ethyldiazoacetate (EDA) is disclosed. The anticipated well-defined tetradentate coordination in a C(3)-symmetric fashion was achieved with Rh(I) and Ir(I), leading to the overall five-coordinated complexes 7-12. Complex 11 has the norbornadiene (nbd) ligand coordinated in an unprecedented monodentate 2,3-eta(2) mode to Rh. Furthermore, unexpected but very interesting redox-chemistry and reactivity was displayed by the Rh(Cl)-complexes 7 and 8. Oxidation resulted in the formation of stable Rh(II) metalloradicals [7]PF(6) and [8]PF(6) that were characterized by X-ray crystallography, magnetic susceptibility measurements, cyclic voltammetry, and electron paramagnetic resonance (EPR) spectroscopy. Subsequent redox-reactivity of these metalloradicals toward molecular hydrogen is described, resulting in the formation of Rh(III) hydride compounds.

Details

ISSN :
1520510X and 00201669
Volume :
49
Database :
OpenAIRE
Journal :
Inorganic Chemistry
Accession number :
edsair.doi.dedup.....3dc1c7408dd7b876b75826637423e5d2
Full Text :
https://doi.org/10.1021/ic100221w