Back to Search Start Over

Controlling activity and selectivity using water in the Au-catalysed preferential oxidation of CO in H2

Authors :
Bert D. Chandler
Christopher J. Pursell
Johnny Saavedra
Robert M. Rioux
Zhifeng Chen
Todd N. Whittaker
Source :
Nature chemistry. 8(6)
Publication Year :
2015

Abstract

Industrial hydrogen production through methane steam reforming exceeds 50 million tons annually and accounts for 2-5% of global energy consumption. The hydrogen product, even after processing by the water-gas shift, still typically contains ∼1% CO, which must be removed for many applications. Methanation (CO + 3H2 → CH4 + H2O) is an effective solution to this problem, but consumes 5-15% of the generated hydrogen. The preferential oxidation (PROX) of CO with O2 in hydrogen represents a more-efficient solution. Supported gold nanoparticles, with their high CO-oxidation activity and notoriously low hydrogenation activity, have long been examined as PROX catalysts, but have shown disappointingly low activity and selectivity. Here we show that, under the proper conditions, a commercial Au/Al2O3 catalyst can remove CO to below 10 ppm and still maintain an O2-to-CO2 selectivity of 80-90%. The key to maximizing the catalyst activity and selectivity is to carefully control the feed-flow rate and maintain one to two monolayers of water (a key CO-oxidation co-catalyst) on the catalyst surface.

Details

ISSN :
17554349
Volume :
8
Issue :
6
Database :
OpenAIRE
Journal :
Nature chemistry
Accession number :
edsair.doi.dedup.....3da39d9e79d104c0579f6ab9036d2bbf