Back to Search Start Over

Deep Sequential Models for Suicidal Ideation from Multiple Source Data

Authors :
Philippe Courtet
Enrique Baca-García
María Luisa Barrigón
Constanza Vera-Varela
Pablo M. Olmos
Ignacio Peis
Antonio Artés-Rodríguez
Ministerio de Economía y Competitividad (España)
Comunidad de Madrid
Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)
Hospital General Universitario 'Gregorio Marañón' [Madrid]
Neuropsychiatrie : recherche épidémiologique et clinique (PSNREC)
Université Montpellier 1 (UM1)-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Hôpital Lapeyronie [Montpellier] (CHU)
Universidad Autonoma de Madrid (UAM)
Universidad Catolica Del Maule
Universidad Carlos III de Madrid [Madrid] (UC3M)
Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)
Source :
e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid, Universidad Carlos III de Madrid (UC3M), IEEE Journal of Biomedical and Health Informatics, IEEE Journal of Biomedical and Health Informatics, Institute of Electrical and Electronics Engineers, 2019, 23 (6), pp.2286--2293. ⟨10.1109/JBHI.2019.2919270⟩, e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid, instname
Publication Year :
2019

Abstract

This article presents a novel method for predicting suicidal ideation from Electronic Health Records (EHR) and Ecological Momentary Assessment (EMA) data using deep sequential models. Both EHR longitudinal data and EMA question forms are defined by asynchronous, variable length, randomly-sampled data sequences. In our method, we model each of them with a Recurrent Neural Network (RNN), and both sequences are aligned by concatenating the hidden state of each of them using temporal marks. Furthermore, we incorporate attention schemes to improve performance in long sequences and time-independent pre-trained schemes to cope with very short sequences. Using a database of 1023 patients, our experimental results show that the addition of EMA records boosts the system recall to predict the suicidal ideation diagnosis from 48.13% obtained exclusively from EHR-based state-of-the-art methods to 67.78%. Additionally, our method provides interpretability through the t-SNE representation of the latent space. Further, the most relevant input features are identified and interpreted medically.<br />Accepted for publication in IEEE Journal of Biomedical and Health Informatics (JBHI)

Details

Language :
English
ISSN :
21682194
Database :
OpenAIRE
Journal :
e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid, Universidad Carlos III de Madrid (UC3M), IEEE Journal of Biomedical and Health Informatics, IEEE Journal of Biomedical and Health Informatics, Institute of Electrical and Electronics Engineers, 2019, 23 (6), pp.2286--2293. ⟨10.1109/JBHI.2019.2919270⟩, e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid, instname
Accession number :
edsair.doi.dedup.....3d5e58816689b730a64da85f71bd9a9d