Back to Search
Start Over
Periodic solutions of angiogenesis models with time lags
- Source :
- Nonlinear Analysis: Real World Applications. 13:299-311
- Publication Year :
- 2012
- Publisher :
- Elsevier BV, 2012.
-
Abstract
- To enrich the dynamics of mathematical models of angiogenesis, all mechanisms involved are time-dependent. We also assume that the tumor cells enter the mechanisms of angiogenic stimulation and inhibition with some delays. The models under study belong to a special class of nonlinear nonautonomous systems with delays. Explicit sufficient and necessary conditions for the existence of the positive periodic solutions were obtained via topological methods. Some open problems are presented for further studies. Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Berezansky, L.. Ben Gurion University Of The Negev; Israel Fil: Idels, L.. Vancouver Island University; Canadá
- Subjects :
- Existence of positive periodic solutions
Mathematical model
Matemáticas
Angiogenesis
Quantitative Biology::Tissues and Organs
Applied Mathematics
Nonlinear nonautonomous delay differential equations
Mathematical analysis
General Engineering
A priori estimates
Tumor cells
General Medicine
Special class
Matemática Pura
Quantitative Biology::Cell Behavior
Computational Mathematics
Nonlinear system
Applied mathematics
General Economics, Econometrics and Finance
CIENCIAS NATURALES Y EXACTAS
Analysis
Mathematics
Subjects
Details
- ISSN :
- 14681218
- Volume :
- 13
- Database :
- OpenAIRE
- Journal :
- Nonlinear Analysis: Real World Applications
- Accession number :
- edsair.doi.dedup.....3d292809523d524189ef42b80ca055d9
- Full Text :
- https://doi.org/10.1016/j.nonrwa.2011.07.035