Back to Search Start Over

On the spacing distribution of the Riemann zeros: corrections to the asymptotic result

Authors :
P. Leboeuf
E. Bogomolny
A. G. Monastra
Oriol Bohigas
Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS)
Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
Institut für Theoretische Physik [Dresden]
Technische Universität Dresden = Dresden University of Technology (TU Dresden)
Le Vaou, Claudine
Source :
Journal of Physics A: Mathematical and Theoretical, Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2006, 39, pp.10743-10754
Publication Year :
2006
Publisher :
arXiv, 2006.

Abstract

It has been conjectured that the statistical properties of zeros of the Riemann zeta function near $z = 1/2 + \ui E$ tend, as $E \to \infty$, to the distribution of eigenvalues of large random matrices from the Unitary Ensemble. At finite $E$ numerical results show that the nearest-neighbour spacing distribution presents deviations with respect to the conjectured asymptotic form. We give here arguments indicating that to leading order these deviations are the same as those of unitary random matrices of finite dimension $N_{\rm eff}=\log(E/2\pi)/\sqrt{12 \Lambda}$, where $\Lambda=1.57314 ...$ is a well defined constant.<br />Comment: 9 pages, 3 figures

Details

ISSN :
17518113 and 17518121
Database :
OpenAIRE
Journal :
Journal of Physics A: Mathematical and Theoretical, Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2006, 39, pp.10743-10754
Accession number :
edsair.doi.dedup.....3cb2bf335fb1d51c7cd2ca2f16cb017a
Full Text :
https://doi.org/10.48550/arxiv.math/0602270