Back to Search Start Over

Prediction Of Optimal Operation Point Existence And Parameters In Lossy Compression Of Noisy Images

Authors :
Alexander N. Zemliachenko
Vladimir V. Lukin
Sergey K. Abramov
Benoit Vozel
Kacem Chehdi
Kharkov National University
Institut d'Électronique et des Technologies du numéRique (IETR)
Nantes Université (NU)-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Université de Nantes (UN)-Université de Rennes 1 (UR1)
Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Source :
SPIE European Remote Sensing Conference, 9244, Image and Signal Processing for Remote Sensing XX, 92440H, SPIE European Remote Sensing Conference, 9244, Image and Signal Processing for Remote Sensing XX, 92440H, Sep 2014, Amsterdam, Netherlands. http://spie.org/Publications/Proceedings/Paper/10.1117/12.2065947, ⟨10.1117/12.2065947⟩
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

This paper deals with lossy compression of images corrupted by additive white Gaussian noise. For such images, compression can be characterized by existence of optimal operation point (OOP). In OOP, MSE or other metric derived between compressed and noise-free image might have optimum, i.e., maximal noise removal effect takes place. If OOP exists, then it is reasonable to compress an image in its neighbourhood. If no, more “careful” compression is reasonable. In this paper, we demonstrate that existence of OOP can be predicted based on very simple and fast analysis of discrete cosine transform (DCT) statistics in 8x8 blocks. Moreover, OOP can be predicted not only for conventional metrics as MSE or PSNR but also for visual quality metrics. Such prediction can be useful in automatic compression of multi- and hyperspectral remote sensing images.

Details

Language :
English
Database :
OpenAIRE
Journal :
SPIE European Remote Sensing Conference, 9244, Image and Signal Processing for Remote Sensing XX, 92440H, SPIE European Remote Sensing Conference, 9244, Image and Signal Processing for Remote Sensing XX, 92440H, Sep 2014, Amsterdam, Netherlands. http://spie.org/Publications/Proceedings/Paper/10.1117/12.2065947, ⟨10.1117/12.2065947⟩
Accession number :
edsair.doi.dedup.....3cab7426fdac15a61c8db60ea25407c5