Back to Search Start Over

Computing how-provenance for SPARQL queries via query rewriting

Authors :
Daniel Hernández
Luis Galárraga
Katja Hose
Large Scale Collaborative Data Mining (LACODAM)
Inria Rennes – Bretagne Atlantique
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-GESTION DES DONNÉES ET DE LA CONNAISSANCE (IRISA-D7)
Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes 1 (UR1)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Aalborg University [Denmark] (AAU)
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique)
Source :
Proceedings of the VLDB Endowment (PVLDB), Proceedings of the VLDB Endowment (PVLDB), VLDB Endowment, 2021, 14 (13), pp.3389-3401. ⟨10.14778/3484224.3484235⟩, Proceedings of the VLDB Endowment (PVLDB), 2021, 14 (13), pp.3389-3401. ⟨10.14778/3484224.3484235⟩
Publication Year :
2021
Publisher :
Association for Computing Machinery (ACM), 2021.

Abstract

International audience; Over the past few years, we have witnessed the emergence of large knowledge graphs built by extracting and combining information from multiple sources. This has propelled many advances in query processing over knowledge graphs, however the aspect of providing provenance explanations for query results has so far been mostly neglected. We therefore propose a novel method, SPARQLprov, based on query rewriting, to compute how-provenance polynomials for SPARQL queries over knowledge graphs. Contrary to existing works, SPARQLprov is system-agnostic and can be applied to standard and already deployed SPARQL engines without the need of customized extensions. We rely on spm-semirings to compute polynomial annotations that respect the property of commutation with homomorphisms on monotonic and non-monotonic SPARQL queries without aggregate functions. Our evaluation on real and synthetic data shows that SPARQLprov over standard engines incurs an acceptable runtime overhead w.r.t. the original query, competing with state-of-the-art solutions for how-provenance computation.

Details

ISSN :
21508097
Volume :
14
Database :
OpenAIRE
Journal :
Proceedings of the VLDB Endowment
Accession number :
edsair.doi.dedup.....3c78683aea90f90b090a16c59f4914ce