Back to Search Start Over

Inhibition of Cdk5 in the nucleus accumbens enhances the locomotor-activating and incentive-motivational effects of cocaine

Authors :
Peter Olausson
Hayde Sanchez
Jane R. Taylor
James A. Bibb
Wendy J. Lynch
Eric J. Nestler
Source :
Proceedings of the National Academy of Sciences. 104:4147-4152
Publication Year :
2007
Publisher :
Proceedings of the National Academy of Sciences, 2007.

Abstract

Neuronal adaptations in striatal dopamine signaling have been implicated in enhanced responses to addictive drugs. Cyclin-dependent kinase 5 (Cdk5) regulates striatal dopamine signaling and is a downstream target gene of the transcription factor ΔFosB, which accumulates in striatal neurons after chronic cocaine exposure. Here we investigated the role of Cdk5 activity in the nucleus accumbens (NAc) on cocaine-induced locomotor sensitization, responding for reward-associated stimuli (conditioned reinforcement), and cocaine self-administration under a progressive ratio schedule. Repeated infusions of the Cdk5 inhibitor roscovitine into the NAc before cocaine injections augmented both the development and expression of cocaine sensitization without having any intrinsic stimulant actions of its own. Additionally, repeated intra-NAc infusions of roscovitine to saline-injected rats enhanced locomotor responses to a subsequent cocaine challenge. Similar effects were found after infusions of another Cdk5 inhibitor, olomoucine, but not its inactive congener, iso-olomoucine. Repeated inhibition of Cdk5 within the NAc also robustly enhanced the incentive-motivational effects of cocaine, similar to the effect of prior repeated cocaine exposure. The enhanced responding with conditioned reinforcement induced by cocaine persisted at least 2 weeks after the final roscovitine infusion. NAc infusions of olomoucine also produced acute and enduring increases in “breakpoints” achieved on a progressive ratio schedule for cocaine reinforcement. These results demonstrate profound and persistent effects of NAc Cdk5 inhibition on locomotor sensitization and incentive-motivational processes and provide direct evidence for a role for striatal Cdk5-induced alterations in the brain's long-term adaptations to cocaine.

Details

ISSN :
10916490 and 00278424
Volume :
104
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....3c4f66065f39162a909434a2088b08ab
Full Text :
https://doi.org/10.1073/pnas.0610288104