Back to Search
Start Over
Arylamino-fluorene derivatives: Optically induced electron transfer investigation, redox-controlled modulation of absorption and fluorescence
- Source :
- Dyes and pigments 177 (2020): 108325. doi:10.1016/j.dyepig.2020.108325, info:cnr-pdr/source/autori:Capodilupo A.-L.; Manni F.; Corrente G.A.; Accorsi G.; Fabiano E.; Cardone A.; Giannuzzi R.; Beneduci A.; Gigli G./titolo:Arylamino-fluorene derivatives: Optically induced electron transfer investigation, redox-controlled modulation of absorption and fluorescence/doi:10.1016%2Fj.dyepig.2020.108325/rivista:Dyes and pigments/anno:2020/pagina_da:108325/pagina_a:/intervallo_pagine:108325/volume:177
- Publication Year :
- 2020
- Publisher :
- Applied Science Publishers Ltd, London , Regno Unito, 2020.
-
Abstract
- A series of biarylaminofluorene-based systems with donor-π-donor (D-π-D) structure have been designed and synthesized in order to study the dependence on the π-conjugated bridge length of the intervalence charge-transfer transitions (IV-CT) and of the electronic coupling between the redox centers. To this purpose cyclic voltammetry, UV/Vis-NIR, fluorescence spectroscopy and computational investigations have been carried out to characterize the electronic structure of the compounds in the neutral as well as in the mono- and dication states. Additionally, a study of related D-π compounds has been performed to elucidate the effect of the interaction between two redox centers. Interestingly it was observed that the mono- and dication species exhibit intense transition bands in the NIR region, in the 10000-15000 cm−1 range, whose intensity depends on the oxidation state and thus it can be reversibly tuned by an applied potential. In a similar way, all compounds show an oxidation state dependent fluorescence which leads to electrofluorochromism. Particularly significant is the mixed valence behavior that provides these systems singular optoelectronic properties, making them excellent active components for electrochromic and electrofluorochromic applications.
- Subjects :
- Materials science
General Chemical Engineering
02 engineering and technology
Fluorene
010402 general chemistry
Photochemistry
01 natural sciences
Redox
Fluorescence spectroscopy
chemistry.chemical_compound
Electron transfer
Electrofluorochromism
Mixed-valence
Triarylamines
Valence (chemistry)
Process Chemistry and Technology
021001 nanoscience & nanotechnology
Optically induced electron transfer
0104 chemical sciences
Dication
chemistry
Electrochromism
NIR-Electrochromism
Cyclic voltammetry
0210 nano-technology
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Dyes and pigments 177 (2020): 108325. doi:10.1016/j.dyepig.2020.108325, info:cnr-pdr/source/autori:Capodilupo A.-L.; Manni F.; Corrente G.A.; Accorsi G.; Fabiano E.; Cardone A.; Giannuzzi R.; Beneduci A.; Gigli G./titolo:Arylamino-fluorene derivatives: Optically induced electron transfer investigation, redox-controlled modulation of absorption and fluorescence/doi:10.1016%2Fj.dyepig.2020.108325/rivista:Dyes and pigments/anno:2020/pagina_da:108325/pagina_a:/intervallo_pagine:108325/volume:177
- Accession number :
- edsair.doi.dedup.....3c4513804152e43d8e3cce607746493b
- Full Text :
- https://doi.org/10.1016/j.dyepig.2020.108325