Back to Search
Start Over
Lieb–Thirring inequalities for an effective Hamiltonian of bilayer graphene
- Source :
- Journal of Spectral Theory, Journal of Spectral Theory, 2021, 11 (3), pp.1145-1178. ⟨10.4171/jst/368⟩, Journal of Spectral Theory, European Mathematical Society, 2021, 11 (3), pp.1145-1178. ⟨10.4171/jst/368⟩
- Publication Year :
- 2021
- Publisher :
- European Mathematical Society - EMS - Publishing House GmbH, 2021.
-
Abstract
- Combining the methods of Cuenin [2019] and Borichev-Golinskii-Kupin [2009, 2018], we obtain the so-called Lieb-Thirring inequalities for non-selfadjoint perturbations of an effective Hamiltonian for bilayer graphene.<br />22 pages; few typos corrected
- Subjects :
- Physics
Condensed Matter - Mesoscale and Nanoscale Physics
FOS: Physical sciences
35P15, 30C35, 47A75
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
Mathematics::Spectral Theory
Discrete spectrum
Mathematics - Spectral Theory
Quantum mechanics
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
FOS: Mathematics
Geometry and Topology
Bilayer graphene
Spectral Theory (math.SP)
Mathematical Physics
Hamiltonian (control theory)
[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]
Subjects
Details
- ISSN :
- 1664039X and 16640403
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- Journal of Spectral Theory
- Accession number :
- edsair.doi.dedup.....3c3e72504a3f67834e6b447cb0c1ae23
- Full Text :
- https://doi.org/10.4171/jst/368