Back to Search
Start Over
Whole-genome expression analysis in primary human keratinocyte cell cultures exposed to 60 GHz radiation
- Source :
- Bioelectromagnetics, Bioelectromagnetics, Wiley, 2012, 33 (2), pp.147-158. ⟨10.1002/bem.20693⟩, Bioelectromagnetics, 2012, 33 (2), pp.147-158. ⟨10.1002/bem.20693⟩
- Publication Year :
- 2011
- Publisher :
- Wiley, 2011.
-
Abstract
- International audience; The main purpose of this study is to investigate potential responses of skin cells to millimeter wave (MMW) radiation increasingly used in the wireless technologies. Primary human skin cells were exposed for 1, 6, or 24 h to 60.4 GHz with an average incident power density of 1.8 mW/cm(2) and an average specific absorption rate of 42.4 W/kg. A large-scale analysis was performed to determine whether these exposures could affect the gene expression. Gene expression microarrays containing over 41,000 unique human transcript probe sets were used, and data obtained for sham and exposed cells were compared. No significant difference in gene expression was observed when gene expression values were subjected to a stringent statistical analysis such as the Benjamini-Hochberg procedure. However, when a t-test was employed to analyze microarray data, 130 transcripts were found to be potentially modulated after exposure. To further quantitatively analyze these preselected transcripts, real-time PCR was performed on 24 genes with the best combination of high fold change and low P-value. Five of them, namely CRIP2, PLXND1, PTX3, SERPINF1, and TRPV2, were confirmed as differentially expressed after 6 h of exposure. To the best of our knowledge, this is the first large-scale study reporting on potential gene expression modification associated with MMW radiation used in wireless communication applications. Bioelectromagnetics. © 2011 Wiley-Liss, Inc.
- Subjects :
- Keratinocytes
Male
Proteome
Physiology
[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]
Biophysics
Human skin
02 engineering and technology
Biology
Radiation Dosage
03 medical and health sciences
0302 clinical medicine
[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN]
Gene expression
0202 electrical engineering, electronic engineering, information engineering
Humans
Radiology, Nuclear Medicine and imaging
Microwaves
Gene
Cells, Cultured
[PHYS.PHYS.PHYS-BIO-PH] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]
Genome, Human
Microarray analysis techniques
Dose-Response Relationship, Radiation
020206 networking & telecommunications
General Medicine
PTX3
Molecular biology
Fold change
Gene Expression Regulation
Cell culture
030220 oncology & carcinogenesis
[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN]
DNA microarray
Subjects
Details
- ISSN :
- 01978462 and 1521186X
- Volume :
- 33
- Database :
- OpenAIRE
- Journal :
- Bioelectromagnetics
- Accession number :
- edsair.doi.dedup.....3c36a5ff7e6c1f1b1bb50213a8a15f8d