Back to Search Start Over

Oxidative decomposition mechanisms of lithium peroxide clusters: an Ab Initio study

Authors :
Larry A. Curtiss
Rajeev S. Assary
Source :
Molecular Physics. 117:1459-1468
Publication Year :
2019
Publisher :
Informa UK Limited, 2019.

Abstract

Oxidative decomposition of solid lithium peroxide is an important part of the charging process in a Li-O2 battery. In this paper, we investigate oxidative decomposition mechanisms of lithium peroxide clusters as molecular models for solid lithium peroxide using density functional methods to understand charging processes in advanced energy storage systems. Most calculations are done using a (Li2O2)4 cluster with similar results obtained from a larger (Li2O2)16 cluster. Reaction pathways of the clusters involving different sequences of oxidation, oxygen evolution, lithium cation removal, and spin excitation are investigated. The computations suggest that certain oxidative decomposition routes may not have dependence on the oxygen evolution or Li-ion removal kinetics due to the exothermicity of oxygen removal and Li+ removal (by solvent) upon oxidation. The computed charge potentials evaluated using a tetramer model indicates that it is possible to have low overcharge potential provided there exists a good electronic conductivity to facilitate the oxidative decomposition. Finally, oxidation potentials of a series of LixOy clusters are investigated to assess their dependence on stoichiometry and how the local site from which the electrons are being removed affects the charge potentials.

Details

ISSN :
13623028 and 00268976
Volume :
117
Database :
OpenAIRE
Journal :
Molecular Physics
Accession number :
edsair.doi.dedup.....3c15b13aea0eba4e37fc8b1c3ee58c60
Full Text :
https://doi.org/10.1080/00268976.2018.1559955