Back to Search Start Over

Delexicalized Paraphrase Generation

Authors :
Wael Hamza
Konstantine Arkoudas
Boya Yu
Source :
COLING (Industry)
Publication Year :
2020
Publisher :
arXiv, 2020.

Abstract

We present a neural model for paraphrasing and train it to generate delexicalized sentences. We achieve this by creating training data in which each input is paired with a number of reference paraphrases. These sets of reference paraphrases represent a weak type of semantic equivalence based on annotated slots and intents. To understand semantics from different types of slots, other than anonymizing slots, we apply convolutional neural networks (CNN) prior to pooling on slot values and use pointers to locate slots in the output. We show empirically that the generated paraphrases are of high quality, leading to an additional 1.29% exact match on live utterances. We also show that natural language understanding (NLU) tasks, such as intent classification and named entity recognition, can benefit from data augmentation using automatically generated paraphrases.

Details

Database :
OpenAIRE
Journal :
COLING (Industry)
Accession number :
edsair.doi.dedup.....3c11ac2ff6e46d55825e387faa10c976
Full Text :
https://doi.org/10.48550/arxiv.2012.02763