Back to Search Start Over

Base excision repair plays an important role in the protection against nitric oxide- and in vivo-induced DNA damage in Trypanosoma brucei

Authors :
Antonio E. Vidal
Luis M. Ruiz-Pérez
Víctor M. Castillo-Acosta
Miriam Yagüe-Capilla
Daniel García-Caballero
Fernando Aguilar-Pereyra
Dolores González-Pacanowska
Junta de Andalucía
Ministerio de Ciencia, Innovación y Universidades (España)
Red de Investigación Cooperativa en Enfermedades Tropicales (España)
European Commission
Yague-Capilla, Miriam
Castillo Acosta, Víctor M.
González-Pacanowska, D.
Yague-Capilla, Miriam [0000-0002-9643-9960]
Castillo Acosta, Víctor M. [0000-0003-0938-2343]
González-Pacanowska, D. [0000-0002-4303-5209]
Source :
Digital.CSIC. Repositorio Institucional del CSIC, instname
Publication Year :
2019
Publisher :
Elsevier, 2019.

Abstract

Uracil-DNA glycosylase (UNG) initiates the base excision repair pathway by excising uracil from DNA. We have previously shown that Trypanosoma brucei cells defective in UNG exhibit reduced infectivity thus demonstrating the relevance of this glycosylase for survival within the mammalian host. In the early steps of the immune response, nitric oxide (NO) is released by phagocytes, which in combination with oxygen radicals produce reactive nitrogen species (RNS). These species can react with DNA generating strand breaks and base modifications including deaminations. Since deaminated cytosines are the main substrate for UNG, we hypothesized that the glycosylase might confer protection towards nitrosative stress. Our work establishes the occurrence of genotoxic damage in Trypanosoma brucei upon exposure to NO in vitro and shows that deficient base excision repair results in increased levels of damage in DNA and a hypermutator phenotype. We also evaluate the incidence of DNA damage during infection in vivo and show that parasites recovered from mice exhibit higher levels of DNA strand breaks, base deamination and repair foci compared to cells cultured in vitro. Notably, the absence of UNG leads to reduced infectivity and enhanced DNA damage also in animal infections. By analysing mRNA and protein levels, we found that surviving UNG-KO trypanosomes highly express tryparedoxin peroxidase involved in trypanothione/tryparedoxin metabolism. These observations suggest that the immune response developed by the host enhances the activation of genes required to counteract oxidative stress and emphasize the importance of DNA repair pathways in the protection to genotoxic and oxidative stress in trypanosomes.<br />This work was funded by the Junta de Andalucía (BIO-199); the Plan Nacionalde Investigación Científica, Instituto de Salud Carlos III-Subdirección General de Redes y Centros de Investigación Cooperativa-Red de Investigación Cooperativa en Enfermedades Tropicales (RICET: RD16/0027/0014) and FEDER; and the Plan Nacional (SAF2016-79957-R). We thank Dr Carlos Robello for kindly providing the anti-TbTRYP1 antibody and Dr David Horn for the anti-TbγH2A antibody.

Details

Language :
English
Database :
OpenAIRE
Journal :
Digital.CSIC. Repositorio Institucional del CSIC, instname
Accession number :
edsair.doi.dedup.....3bff9e5f96cb8efa86955568e47b7b5c