Back to Search
Start Over
Automated Classification and Segmentation in Colorectal Images Based on Self-Paced Transfer Network
- Source :
- BioMed Research International, BioMed Research International, Vol 2021 (2021)
- Publication Year :
- 2021
- Publisher :
- Hindawi, 2021.
-
Abstract
- Colorectal imaging improves on diagnosis of colorectal diseases by providing colorectal images. Manual diagnosis of colorectal disease is labor-intensive and time-consuming. In this paper, we present a method for automatic colorectal disease classification and segmentation. Because of label unbalanced and difficult colorectal data, the classification based on self-paced transfer VGG network (STVGG) is proposed. ImageNet pretraining network parameters are transferred to VGG network with training colorectal data to acquire good initial network performance. And self-paced learning is used to optimize the network so that the classification performance of label unbalanced and difficult samples is improved. In order to assist the colonoscopist to accurately determine whether the polyp needs surgical resection, feature of trained STVGG model is shared to Unet segmentation network as the encoder part and to avoid repeat learning of polyp segmentation model. The experimental results on 3061 colorectal images illustrated that the proposed method obtained higher classification accuracy (96%) and segmentation performance compared with a few other methods. The polyp can be segmented accurately from around tissues by the proposed method. The segmentation results underpin the potential of deep learning methods for assisting colonoscopist in identifying polyps and enabling timely resection of these polyps at an early stage.
- Subjects :
- 0301 basic medicine
Article Subject
Computer science
General Biochemistry, Genetics and Molecular Biology
Resection
Machine Learning
03 medical and health sciences
Automation
0302 clinical medicine
Image Processing, Computer-Assisted
Humans
Segmentation
Network performance
Self paced
General Immunology and Microbiology
business.industry
Deep learning
Pattern recognition
General Medicine
Colonoscopy
030104 developmental biology
Colorectal disease
Feature (computer vision)
030220 oncology & carcinogenesis
Medicine
Artificial intelligence
Neural Networks, Computer
business
Colorectal Neoplasms
Encoder
Algorithms
Research Article
Subjects
Details
- Language :
- English
- ISSN :
- 23146141 and 23146133
- Volume :
- 2021
- Database :
- OpenAIRE
- Journal :
- BioMed Research International
- Accession number :
- edsair.doi.dedup.....3bed8066b782cf151cec598fc20cf541