Back to Search Start Over

The Sirtuin1 Activator SRT3025 Down-Regulates Sclerostin and Rescues Ovariectomy-Induced Bone Loss and Biomechanical Deterioration in Female Mice

Authors :
Rivka Dresner-Pollak
Einav Cohen-Kfir
Hanna Artsi
Irina Gurt
Alon Bajayo
Yankel Gabet
Noga Kalish
Ron Shahar
Teresita Bellido
Source :
Endocrinology. 155:3508-3515
Publication Year :
2014
Publisher :
The Endocrine Society, 2014.

Abstract

Estrogen deficiency leads to rapid bone loss and skeletal fragility. Sclerostin, encoded by the sost gene, and a product of the osteocyte, is a negative regulator of bone formation. Blocking sclerostin increases bone mass and strength in animals and humans. Sirtuin1 (Sirt1), a player in aging and metabolism, regulates bone mass and inhibits sost expression by deacetylating histone 3 at its promoter. We asked whether a Sirt1-activating compound could rescue ovariectomy (OVX)-induced bone loss and biomechanical deterioration in 9-week-old C57BL/6 mice. OVX resulted in a substantial decrease in skeletal Sirt1 expression accompanied by an increase in sclerostin. Oral administration of SRT3025, a Sirt1 activator, at 50 and 100 mg/kg·d for 6 weeks starting 6 weeks after OVX fully reversed the deleterious effects of OVX on vertebral bone mass, microarchitecture, and femoral biomechanical properties. Treatment with SRT3025 decreased bone sclerostin expression and increased cortical periosteal mineralizing surface and serum propeptide of type I procollagen, a bone formation marker. In vitro, in the murine long bone osteocyte-Y4 osteocyte-like cell line SRT3025 down-regulated sclerostin and inactive β-catenin, whereas a reciprocal effect was observed with EX-527, a Sirt1 inhibitor. Sirt1 activation by Sirt1-activating compounds is a potential novel pathway to down-regulate sclerostin and design anabolic therapies for osteoporosis concurrently ameliorating other metabolic and age-associated conditions.

Details

ISSN :
19457170 and 00137227
Volume :
155
Database :
OpenAIRE
Journal :
Endocrinology
Accession number :
edsair.doi.dedup.....3bb8ec111cbf18d6eecd7462be6ad5e1
Full Text :
https://doi.org/10.1210/en.2014-1334