Back to Search
Start Over
Systems modeling accurately predicts responses to genotoxic agents and their synergism with BCL-2 inhibitors in triple negative breast cancer cells
- Source :
- Cell Death & Disease, Cell Death and Disease, Vol 9, Iss 2, Pp 1-13 (2018)
- Publication Year :
- 2018
- Publisher :
- Nature Publishing Group UK, 2018.
-
Abstract
- Triple negative breast cancer (TNBC) is an aggressive form of breast cancer which accounts for 15–20% of this disease and is currently treated with genotoxic chemotherapy. The BCL2 (B-cell lymphoma 2) family of proteins controls the process of mitochondrial outer membrane permeabilization (MOMP), which is required for the activation of the mitochondrial apoptosis pathway in response to genotoxic agents. We previously developed a deterministic systems model of BCL2 protein interactions, DR_MOMP that calculates the sensitivity of cells to undergo mitochondrial apoptosis. Here we determined whether DR_MOMP predicts responses of TNBC cells to genotoxic agents and the re-sensitization of resistant cells by BCL2 inhibitors. Using absolute protein levels of BAX, BAK, BCL2, BCL(X)L and MCL1 as input for DR_MOMP, we found a strong correlation between model predictions and responses of a panel of TNBC cells to 24 and 48 h cisplatin (R2 = 0.96 and 0.95, respectively) and paclitaxel treatments (R2 = 0.94 and 0.95, respectively). This outperformed single protein correlations (best performer BCL(X)L with R2 of 0.69 and 0.50 for cisplatin and paclitaxel treatments, respectively) and BCL2 proteins ratio (R2 of 0.50 for cisplatin and 0.49 for paclitaxel). Next we performed synergy studies using the BCL2 selective antagonist Venetoclax /ABT199, the BCL(X)L selective antagonist WEHI-539, or the MCL1 selective antagonist A-1210477 in combination with cisplatin. In silico predictions by DR_MOMP revealed substantial differences in treatment responses of BCL(X)L, BCL2 or MCL1 inhibitors combinations with cisplatin that were successfully validated in cell lines. Our findings provide evidence that DR_MOMP predicts responses of TNBC cells to genotoxic therapy, and can aid in the choice of the optimal BCL2 protein antagonist for combination treatments of resistant cells.
- Subjects :
- 0301 basic medicine
Cancer Research
Programmed cell death
Systems Analysis
Immunology
Triple Negative Breast Neoplasms
Article
03 medical and health sciences
Cellular and Molecular Neuroscience
chemistry.chemical_compound
medicine
Humans
MCL1
lcsh:QH573-671
Triple-negative breast cancer
Cisplatin
lcsh:Cytology
Chemistry
Venetoclax
Antagonist
Cell Biology
3. Good health
030104 developmental biology
Paclitaxel
Proto-Oncogene Proteins c-bcl-2
Apoptosis
Cancer research
medicine.drug
Subjects
Details
- Language :
- English
- ISSN :
- 20414889
- Volume :
- 9
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Cell Death & Disease
- Accession number :
- edsair.doi.dedup.....3bb75cb87ed2cde97d091f01d0e652d6