Back to Search
Start Over
Convergence of cells from the progenitor fraction of adult olfactory bulb tissue to remyelinating glia in demyelinating spinal cord lesions
- Source :
- PLoS ONE, Vol 4, Iss 9, p e7260 (2009), PLoS ONE
- Publication Year :
- 2009
- Publisher :
- Public Library of Science (PLoS), 2009.
-
Abstract
- BACKGROUND:Progenitor cells isolated from adult brain tissue are important tools for experimental studies of remyelination. Cells harvested from neurogenic regions in the adult brain such as the subependymal zone have demonstrated remyelination potential. Multipotent cells from the progenitor fraction have been isolated from the adult olfactory bulb (OB) but their potential to remyelinate has not been studied. METHODOLOGY/PRINCIPAL FINDINGS:We used the buoyant density gradient centrifugation method to isolate the progenitor fraction and harvest self-renewing multipotent neural cells grown in monolayers from the adult green-fluorescent protein (GFP) transgenic rat OB. OB tissue was mechanically and chemically dissociated and the resultant cell suspension fractionated on a Percoll gradient. The progenitor fraction was isolated and these cells were plated in growth media with serum for 24 hrs. Cells were then propagated in N2 supplemented serum-free media containing b-FGF. Cells at passage 4 (P4) were introduced into a demyelinated spinal cord lesion. The GFP(+) cells survived and integrated into the lesion, and extensive remyelination was observed in plastic sections. Immunohistochemistry revealed GFP(+) cells in the spinal cord to be glial fibrillary acidic protein (GFAP), neuronal nuclei (NeuN), and neurofilament negative. The GFP(+) cells were found among primarily P0(+) myelin profiles, although some myelin basic protein (MBP) profiles were present. Immuno-electron microscopy for GFP revealed GFP(+) cell bodies adjacent to and surrounding peripheral-type myelin rings. CONCLUSIONS/SIGNIFICANCE:We report that neural cells from the progenitor fraction of the adult rat OB grown in monolayers can be expanded for several passages in culture and that upon transplantation into a demyelinated spinal cord lesion provide extensive remyelination without ectopic neuronal differentiation.
- Subjects :
- Cellular differentiation
Green Fluorescent Proteins
lcsh:Medicine
Neurological Disorders/Multiple Sclerosis and Related Disorders
Biology
03 medical and health sciences
Myelin
0302 clinical medicine
medicine
Subependymal zone
Animals
Progenitor cell
Remyelination
Microscopy, Immunoelectron
lcsh:Science
Myelin Sheath
Spinal Cord Injuries
030304 developmental biology
0303 health sciences
Multidisciplinary
Glial fibrillary acidic protein
Stem Cells
lcsh:R
Brain
Cell Differentiation
Myelin Basic Protein
Olfactory Bulb
Axons
Myelin basic protein
Cell biology
Rats
medicine.anatomical_structure
Spinal Cord
Immunology
biology.protein
lcsh:Q
Stem cell
Rats, Transgenic
Neuroscience/Neurobiology of Disease and Regeneration
Neuroglia
030217 neurology & neurosurgery
Research Article
Neuroscience
Subjects
Details
- Language :
- English
- ISSN :
- 19326203
- Volume :
- 4
- Issue :
- 9
- Database :
- OpenAIRE
- Journal :
- PLoS ONE
- Accession number :
- edsair.doi.dedup.....3bb4b306d371982d2ae8ce53406987b1