Back to Search
Start Over
Platelet-rich plasma-enhanced osseointegration of decellularized bone matrix in critical-size radial defects in rabbits
- Source :
- Annals of Translational Medicine. 8:198-198
- Publication Year :
- 2020
- Publisher :
- AME Publishing Company, 2020.
-
Abstract
- Background Bone defects represent a common orthopedic condition. With its vast array of donor sources, xenogeneic bone shows considerable potential as a bone defect repair material but may also be associated with immune rejection and reduced osteogenic capacity. Thus, reducing the risks for immune rejection of xenogeneic bone, while improving its osseointegration, are key technical challenges. Methods Decellularized bone matrix scaffolds (DBMs) were fabricated by thorough ultrasonic vibration and subjection to chemical biological agents to remove cells and proteins. The DBMs were then mixed with platelet-rich plasma (PRP) under negative pressure. Growth factor concentrations of PRP, as well as the microstructures and biomechanical properties of the system, were examined. Furthermore, osseointegration capacities in the critical-size radial defect rabbit model were verified. Results Complete decellularization of the scaffold and limited reductions in mechanical strength were observed. Moreover, the obtained PRP demonstrated various growth factors. Radiographic evaluation and histological analysis verified that more new bone formation occurred in the DBM mixed with PRP group at 6 and 12 weeks after implantation compared with both the blank group and the DBM without PRP group. Conclusions Thorough physical and chemical treatments can reduce the probability of immune rejection of DBMs. The novel composite of DBMs mixed with PRP can serve as a promising bone regeneration material.
- Subjects :
- 030222 orthopedics
Scaffold
Decellularization
Chemistry
Growth factor
medicine.medical_treatment
dBm
02 engineering and technology
General Medicine
Bone matrix
021001 nanoscience & nanotechnology
Osseointegration
03 medical and health sciences
0302 clinical medicine
Platelet-rich plasma
medicine
Original Article
0210 nano-technology
Bone regeneration
Biomedical engineering
Subjects
Details
- ISSN :
- 23055847 and 23055839
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- Annals of Translational Medicine
- Accession number :
- edsair.doi.dedup.....3bb35aacf9899077eaebcf9849dd0c1e