Back to Search
Start Over
Entanglement renormalization and boundary critical phenomena
- Source :
- (2010): L03001., info:cnr-pdr/source/autori:Silvi P., V. Giovannetti, P. Calabrese, G.E. Santoro, and R. Fazio/titolo:Entanglement renormalization and boundary critical phenomena/doi:/rivista:/anno:2010/pagina_da:L03001/pagina_a:/intervallo_pagine:L03001/volume
- Publication Year :
- 2009
- Publisher :
- arXiv, 2009.
-
Abstract
- The multiscale entanglement renormalization ansatz is applied to the study of boundary critical phenomena. We compute averages of local operators as a function of the distance from the boundary and the surface contribution to the ground state energy. Furthermore, assuming a uniform tensor structure, we show that the multiscale entanglement renormalization ansatz implies an exact relation between bulk and boundary critical exponents known to exist for boundary critical systems.<br />Comment: 6 pages, 4 figures; for a related work see arXiv:0912.1642
- Subjects :
- Statistics and Probability
Physics
Quantum Physics
Quantum Spin Chain
Statistical Mechanics (cond-mat.stat-mech)
Critical phenomena
Boundary (topology)
FOS: Physical sciences
Statistical and Nonlinear Physics
Quantum entanglement
Settore FIS/03 - Fisica della Materia
Renormalization
Renormalization Group
Matrix Product
Tensor
Boundary value problem
Statistics, Probability and Uncertainty
Quantum Physics (quant-ph)
Critical exponent
Condensed Matter - Statistical Mechanics
Mathematical physics
Ansatz
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- (2010): L03001., info:cnr-pdr/source/autori:Silvi P., V. Giovannetti, P. Calabrese, G.E. Santoro, and R. Fazio/titolo:Entanglement renormalization and boundary critical phenomena/doi:/rivista:/anno:2010/pagina_da:L03001/pagina_a:/intervallo_pagine:L03001/volume
- Accession number :
- edsair.doi.dedup.....3baf3807be2e90e05a14a8048fda8265
- Full Text :
- https://doi.org/10.48550/arxiv.0912.2893