Back to Search Start Over

Advanced bioinformatic analysis and pathway prediction of NSCLC cells upon cisplatin resistance

Authors :
Jone Garai
Jovanny Zabaleta
Constantinos M. Mikelis
Camille F Abshire
George Mattheolabakis
Paula Polk
A K M Nawshad Hossian
Sagun Poudel
Fatema Tuz Zahra
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-15 (2021), Scientific Reports
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

This study aims to identify pathway involvement in the development of cisplatin (cis-diamminedichloroplatinum (II); CDDP) resistance in A549 lung cancer (LC) cells by utilizing advanced bioinformatics software. We developed CDDP-resistant A549 (A549/DDP) cells through prolonged incubation with the drug and performed RNA-seq on RNA extracts to determine differential mRNA and miRNA expression between A549/DDP and A549 cells. We analyzed the gene dysregulation with Ingenuity Pathway Analysis (IPA; QIAGEN) software. In contrast to prior research, which relied on the clustering of dysregulated genes to pathways as an indication of pathway activity, we utilized the IPA software for the dynamic evaluation of pathway activity depending on the gene dysregulation levels. We predicted 15 pathways significantly contributing to the chemoresistance, with several of them to have not been previously reported or analyzed in detail. Among them, the PKR signaling, cholesterol biosynthesis, and TEC signaling pathways are included, as well as genes, such as PIK3R3, miR-34c-5p, and MDM2, among others. We also provide a preliminary analysis of SNPs and indels, present exclusively in A549/DDP cells. This study's results provide novel potential mechanisms and molecular targets that can be explored in future studies and assist in improving the understanding of the chemoresistance phenotype.

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....3b94ca1e0c53947783193c2d98300026