Back to Search Start Over

Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance

Authors :
Mark D. Pegram
Po Yi Ho
Rosalynd Upton
Kevin S. Kao
Benyamin Rosental
Michal Caspi Tal
Mckenna Kelly Marie
Tal Raveh
Stephen B. Willingham
Dongdong Feng
Jens-Peter Volkmer
Allison Banuelos
Tanuka Biswas
Irving L. Weissman
Source :
Proceedings of the National Academy of Sciences of the United States of America
Publication Year :
2021
Publisher :
Proceedings of the National Academy of Sciences, 2021.

Abstract

Significance This study demonstrates the efficacy of combining macrophage-checkpoint inhibition with tumor-specific antibodies for cancer immunotherapy. The combination of anti-CD47 (magrolimab) and anti-HER2 (trastuzumab) antibodies eliminated HER2+ breast cancer cells with increased efficacy due to the enhancement of antibody-dependent cellular phagocytosis by macrophages, even when the cancer cells were tolerant to trastuzumab-induced antibody-dependent cellular cytotoxicity by natural killer cells. We believe these findings present a promising therapeutic approach for treating HER2+ breast cancer patients whose tumors are either sensitive or resistant to trastuzumab treatment, as long as the cells harbor the HER2 trastuzumab-binding epitope. This study supports the notion that combining CD47 blockade with existing macrophage FcR-engaging tumor-specific antibodies may be an effective approach for treating a wide range of cancers.<br />Trastuzumab, a targeted anti-human epidermal-growth-factor receptor-2 (HER2) monoclonal antibody, represents a mainstay in the treatment of HER2-positive (HER2+) breast cancer. Although trastuzumab treatment is highly efficacious for early-stage HER2+ breast cancer, the majority of advanced-stage HER2+ breast cancer patients who initially respond to trastuzumab acquire resistance to treatment and relapse, despite persistence of HER2 gene amplification/overexpression. Here, we sought to leverage HER2 overexpression to engage antibody-dependent cellular phagocytosis (ADCP) through a combination of trastuzumab and anti-CD47 macrophage checkpoint immunotherapy. We have previously shown that blockade of CD47, a surface protein expressed by many malignancies (including HER2+ breast cancer), is an effective anticancer therapy. CD47 functions as a “don’t eat me” signal through its interaction with signal regulatory protein-α (SIRPα) on macrophages to inhibit phagocytosis. Hu5F9-G4 (magrolimab), a humanized monoclonal antibody against CD47, blocks CD47’s “don’t eat me” signal, thereby facilitating macrophage-mediated phagocytosis. Preclinical studies have shown that combining Hu5F9-G4 with tumor-targeting antibodies, such as rituximab, further enhances Hu5F9-G4’s anticancer effects via ADCP. Clinical trials have additionally demonstrated that Hu5F9-G4, in combination with rituximab, produced objective responses in patients whose diffuse large B cell lymphomas had developed resistance to rituximab and chemotherapy. These studies led us to hypothesize that combining Hu5F9-G4 with trastuzumab would produce an anticancer effect in antibody-dependent cellular cytotoxicity (ADCC)-tolerant HER2+ breast cancer. This combination significantly suppressed the growth of ADCC-tolerant HER2+ breast cancers via Fc-dependent ADCP. Our study demonstrates that combining trastuzumab and Hu5F9-G4 represents a potential new treatment option for HER2+ breast cancer patients, even for patients whose tumors have progressed after trastuzumab.

Details

ISSN :
10916490 and 00278424
Volume :
118
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....3b86c70a3c209942c00774efc9102ada