Back to Search Start Over

The Multisubstrate Adapter Gab1 Regulates Hepatocyte Growth Factor (Scatter Factor)–c-Met Signaling for Cell Survival and DNA Repair

Authors :
Yong Xian Ma
Itzhak D. Goldberg
Min Gao
Qinghui Meng
Saijun Fan
Ren-qi Yuan
Eliot M. Rosen
Source :
Molecular and Cellular Biology. 21:4968-4984
Publication Year :
2001
Publisher :
Informa UK Limited, 2001.

Abstract

Hepatocyte growth factor (scatter factor) (HGF/SF) is a pleiotrophic mediator of epithelial cell motility, morphogenesis, angiogenesis, and tumorigenesis. HGF/SF protects cells against DNA damage by a pathway from its receptor c-Met to phosphatidylinositol 3-kinase (PI3K) to c-Akt, resulting in enhanced DNA repair and decreased apoptosis. We now show that protection against the DNA-damaging agent adriamycin (ADR; topoisomerase IIalpha inhibitor) requires the Grb2-binding site of c-Met, and overexpression of the Grb2-associated binder Gab1 (a multisubstrate adapter required for epithelial morphogenesis) inhibits the ability of HGF/SF to protect MDCK epithelial cells against ADR. In contrast to Gab1 and its homolog Gab2, overexpression of c-Cb1, another multisubstrate adapter that associates with c-Met, did not affect protection. Gab1 blocked the ability of HGF/SF to cause the sustained activation of c-Akt and c-Akt signaling (FKHR phosphorylation). The Gab1 inhibition of sustained c-Akt activation and of cell protection did not require the Gab1 pleckstrin homology or SHP2 phosphatase-binding domain but did require the PI3K-binding domain. HGF/SF protection of parental MDCK cells was blocked by wortmannin, expression of PTEN, and dominant negative mutants of p85 (regulatory subunit of PI3K), Akt, and Pak1; the protection of cells overexpressing Gab1 was restored by wild-type or activated mutants of p85, Akt, and Pak1. These findings suggest that the adapter Gab1 may redirect c-Met signaling through PI3K away from a c-Akt/Pak1 cell survival pathway.

Details

ISSN :
10985549
Volume :
21
Database :
OpenAIRE
Journal :
Molecular and Cellular Biology
Accession number :
edsair.doi.dedup.....3b836ef76d2122aea6261f36014612bc