Back to Search Start Over

Protein Interaction Networks Link Schizophrenia Risk Loci to Synaptic Function

Authors :
Emanuel Schwarz
Rauf Izmailov
Andreas Meyer-Lindenberg
Pietro Liò
Lio, Pietro [0000-0002-0540-5053]
Apollo - University of Cambridge Repository
Source :
Schizophrenia Bulletin
Publication Year :
2016

Abstract

Schizophrenia is a severe and highly heritable psychiatric disorder affecting approximately 1% of the population. Genome-wide association studies have identified 108 independent genetic loci with genome-wide significance but their functional importance has yet to be elucidated. Here, we develop a novel strategy based on network analysis of protein-protein interactions (PPI) to infer biological function associated with variants most strongly linked to illness risk. We show that the schizophrenia loci are strongly linked to synaptic transmission (P FWE < .001) and ion transmembrane transport (P FWE = .03), but not to ontological categories previously found to be shared across psychiatric illnesses. We demonstrate that brain expression of risk-linked genes within the identified processes is strongly modulated during birth and identify a set of synaptic genes consistently changed across multiple brain regions of adult schizophrenia patients. These results suggest synaptic function as a developmentally determined schizophrenia process supported by the illness's most associated genetic variants and their PPI networks. The implicated genes may be valuable targets for mechanistic experiments and future drug development approaches.

Details

ISSN :
17451701
Volume :
42
Issue :
6
Database :
OpenAIRE
Journal :
Schizophrenia bulletin
Accession number :
edsair.doi.dedup.....3b79e45bc0dfa7ec5727e2d9039e0a6d