Back to Search
Start Over
Commutators with idempotent values on multilinear polynomials in prime rings
- Publication Year :
- 2017
-
Abstract
- Let R be a prime ring of characteristic different from 2, C its extended centroid, d a nonzero derivation of R, f(x 1, . . . , x n ) a multilinear polynomial over C, ρ a nonzero right ideal of R and m > 1 a fixed integer such that $\qquad \left ([d(f(r_{1},\ldots ,r_{n})),f(r_{1},\ldots ,r_{n})]\right )^{m}=[d(f(r_{1},\ldots ,r_{n})),f(r_{1},\ldots ,r_{n})] $ for all r 1, . . . , r n ∈ρ. Then either [f(x 1,…,x n ),x n+1]x n+2 is an identity for ρ or d(ρ)ρ = 0.
- Subjects :
- Discrete mathematics
Multilinear map
General Mathematics
010102 general mathematics
Multilinear polynomial
0102 computer and information sciences
01 natural sciences
Prime (order theory)
Integer
010201 computation theory & mathematics
Prime ring
Idempotence
Derivations
Generalized polynomial identity
Right ideal
Ideal (ring theory)
0101 mathematics
Mathematics
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....3b7296eef83c9f6787217d8c57e9972b