Back to Search
Start Over
Macrocyclic-Amphiphile-Based Self-Assembled Nanoparticles for Ratiometric Delivery of Therapeutic Combinations to Tumors
- Source :
- Advanced materials (Deerfield Beach, Fla.). 33(12)
- Publication Year :
- 2021
-
Abstract
- Combination chemotherapy refers to the use of multiple drugs to treat cancer. In this therapy, the optimal ratio of the drugs is essential to achieve drug synergism and the desired therapeutic effects. However, most delivery strategies are unable to precisely control the ratio of the drugs during the drug loading and delivery processes, resulting in inefficient synergy and unpredictable efficacy. Herein, a macrocyclic-amphiphile-based self-assembled nanoparticle (MASN) that achieves precise loading and ratiometric delivery of therapeutic combinations is presented. By integrating multiple macrocyclic cavities within a single nanoparticle, the MASN can load multiple drug molecules via the host-guest interaction, and the ratio of the drugs loaded can be predicted with their initial concentrations and characteristic binding affinity. Moreover, MASNs are readily degraded under a hypoxic microenvironment, allowing spontaneous release of the drugs upon reaching tumor tissues. With precise drug loading and controlled release mechanisms, MASNs achieve ratiometric delivery of multiple commercial drugs to tumors, thereby achieving optimal anti-tumor effects. Since the optimal drug ratio of a therapeutic combination can be quickly determined in vitro, MASNs can translate this optimal ratio to the therapeutic benefits in vivo, providing a potential platform for the rapid development of effective combination cancer therapies involving multiple drugs.
- Subjects :
- Drug
Materials science
Macrocyclic Compounds
media_common.quotation_subject
Nanoparticle
Antineoplastic Agents
02 engineering and technology
010402 general chemistry
01 natural sciences
Drug synergism
Self assembled
In vivo
Amphiphile
General Materials Science
media_common
Drug Carriers
Mechanical Engineering
Combination chemotherapy
021001 nanoscience & nanotechnology
Controlled release
Combined Modality Therapy
0104 chemical sciences
Mechanics of Materials
Biophysics
Nanoparticles
0210 nano-technology
Hydrophobic and Hydrophilic Interactions
Subjects
Details
- ISSN :
- 15214095
- Volume :
- 33
- Issue :
- 12
- Database :
- OpenAIRE
- Journal :
- Advanced materials (Deerfield Beach, Fla.)
- Accession number :
- edsair.doi.dedup.....3b43127910b4b7ae00bc2fc67a7f6759