Back to Search Start Over

Big data from dynamic pricing: A smart approach to tourism demand forecasting

Authors :
Flavio Maria Emanuele Pons
Ercolino Ranieri
Giovanni Angelini
Andrea Guizzardi
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
guizzardi andrea, pons flavio, giovanni angelini, ercolino ranieri
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Source :
International Journal of Forecasting, International Journal of Forecasting, 2021, 37 (3), pp.1049-1060. ⟨10.1016/j.ijforecast.2020.11.006⟩, International Journal of Forecasting, Elsevier, 2021, 37 (3), pp.1049-1060. ⟨10.1016/j.ijforecast.2020.11.006⟩
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Suppliers of tourist services continuously generate big data on ask prices. We suggest using this information, in the form of a price index, to forecast the occupation rates for virtually any time-space frame, provided that there are a sufficient number of decision makers “sharing” their pricing strategies on the web. Our approach guarantees great transparency and replicability, as big data from OTAs do not depend on search interfaces and can facilitate intelligent interactions between the territory and its inhabitants, thus providing a starting point for a smart decision-making process. We show that it is possible to obtain a noticeable increase in the forecasting performance by including the proposed leading indicator (price index) into the set of explanatory variables, even with very simple model specifications. Our findings offer a new research direction in the field of tourism demand forecasting leveraging on big data from the supply side.

Details

ISSN :
01692070
Volume :
37
Database :
OpenAIRE
Journal :
International Journal of Forecasting
Accession number :
edsair.doi.dedup.....3b3d5204073a9abae75335868120745e
Full Text :
https://doi.org/10.1016/j.ijforecast.2020.11.006