Back to Search
Start Over
Cutting lemma and Zarankiewicz’s problem in distal structures
- Source :
- Selecta Mathematica, vol 26, iss 2
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- We establish a cutting lemma for definable families of sets in distal structures, as well as the optimality of the distal cell decomposition for definable families of sets on the plane in $o$-minimal expansions of fields. Using it, we generalize the results in [J. Fox, J. Pach, A. Sheffer, A. Suk, and J. Zahl. "A semi-algebraic version of Zarankiewicz's problem"] on the semialgebraic planar Zarankiewicz problem to arbitrary $o$-minimal structures, in particular obtaining an $o$-minimal generalization of the Szemer\'edi-Trotter theorem.
Details
- ISSN :
- 14209020 and 10221824
- Volume :
- 26
- Database :
- OpenAIRE
- Journal :
- Selecta Mathematica
- Accession number :
- edsair.doi.dedup.....3b1ed04f107016102fd718c2054a7641
- Full Text :
- https://doi.org/10.1007/s00029-020-0551-2