Back to Search Start Over

Cutting lemma and Zarankiewicz’s problem in distal structures

Authors :
David Galvin
Artem Chernikov
Sergei Starchenko
Source :
Selecta Mathematica, vol 26, iss 2
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

We establish a cutting lemma for definable families of sets in distal structures, as well as the optimality of the distal cell decomposition for definable families of sets on the plane in $o$-minimal expansions of fields. Using it, we generalize the results in [J. Fox, J. Pach, A. Sheffer, A. Suk, and J. Zahl. "A semi-algebraic version of Zarankiewicz's problem"] on the semialgebraic planar Zarankiewicz problem to arbitrary $o$-minimal structures, in particular obtaining an $o$-minimal generalization of the Szemer\'edi-Trotter theorem.

Details

ISSN :
14209020 and 10221824
Volume :
26
Database :
OpenAIRE
Journal :
Selecta Mathematica
Accession number :
edsair.doi.dedup.....3b1ed04f107016102fd718c2054a7641
Full Text :
https://doi.org/10.1007/s00029-020-0551-2