Back to Search
Start Over
Frequency Independent Terahertz Anomalous Hall Effect in DyCo5, Co32Fe68, and Gd27Fe73 Thin Films from DC to 40 THz
- Source :
- Advanced Materials
- Publication Year :
- 2021
-
Abstract
- The anomalous Hall effect (AHE) is a fundamental spintronic charge-to-charge-current conversion phenomenon and closely related to spin-to-charge-current conversion by the spin Hall effect. Future high-speedspintronic devices will crucially rely on such conversion effects at terahertz (THz) frequencies. Here, we reveal that the AHE remains operative from DC up to 40 THz with a flat frequency response in thin films of three technologically relevant magnetic materials: DyCo5, Co32Fe68 and Gd27Fe73. We measure the frequency-dependent conductivity-tensor elements σxx and σyx and find good agreement with DCmeasurements. The experimental findings are fully consistent with ab-initio calculations of σyx for CoFe and highlight the role of the large Drude scattering rate (~100 THz) of metal thin films, which smears out any sharp spectral features of the THz AHE. Finally, we find that the intrinsic contribution to the THz AHE dominates over the extrinsic mechanisms for our samples. Our results imply that the AHE and related effects such as the spinHall effect are highly promising ingredients of future THz spintronic devices reliably operating from DC to 40 THz and beyond.
- Subjects :
- Condensed Matter - Materials Science
terahertz ellipsometry
terahertz spintronics
terahertz time
domain spectroscopy
Hall effect
magnetic materials
Condensed Matter - Mesoscale and Nanoscale Physics
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Materials Science (cond-mat.mtrl-sci)
FOS: Physical sciences
terahertz time‐
Condensed Matter Physics
Den kondenserade materiens fysik
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Advanced Materials
- Accession number :
- edsair.doi.dedup.....3b19bbf76b904a367598a516eff7fab8