Back to Search
Start Over
A Hungarian Algorithm for Error-Correcting Graph Matching
- Source :
- Lecture Notes in Computer Science, 11th IAPR-TC-15 International Workshop on Graph-Based Representation in Pattern Recognition (GbRPR 2017), 11th IAPR-TC-15 International Workshop on Graph-Based Representation in Pattern Recognition (GbRPR 2017), Pasquale Foggia, May 2017, AnaCapri, Italy. pp.118-127, ⟨10.1007/978-3-319-58961-9_11⟩, Graph-Based Representations in Pattern Recognition ISBN: 9783319589602, GbRPR
- Publication Year :
- 2017
- Publisher :
- HAL CCSD, 2017.
-
Abstract
- International audience; Bipartite graph matching algorithms become more and more popular to solve error-correcting graph matching problems and to approximate the graph edit distance of two graphs. However, the memory requirements and execution times of this method are respectively proportional to (n + m) 2 and (n + m) 3 where n and m are the order of the graphs. Subsequent developments reduced these complexities. However , these improvements are valid only under some constraints on the parameters of the graph edit distance. We propose in this paper a new formulation of the bipartite graph matching algorithm designed to solve efficiently the associated graph edit distance problem. The resulting algorithm requires O(nm) memory space and O(min(n, m) 2 max(n, m)) execution times.; L'appariement de graphes biparti deviennent de plus en plus populaires pour résoudre des problèmes d'appariement de graphes avec correction d'erreurs et pour approximer la distance d'édition sur graphes. Cependant, les exigences en mémoire et temps de calcul de cette méthode sont respectivement proportionnels à (n + m)^2 et (n + m)^3 où n et m représentent la taille des deux graphes. Des développements ultérieurs ont réduit ces complexités. Cependant, ces améliorations ne sont valables que sous certaines contraintes sur les paramètres de la distance d'édition. Nous proposons dans cet article une nouvelle formulation de l'algorithme Hongrois conçu pour résoudre efficacement le problème de distance d'édition associé. L'algorithme résultat nécessite un espace mémoire O (nm) et des temps d'exécution O (min (n, m)^2 max (n, m)).
- Subjects :
- Factor-critical graph
Voltage graph
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
Error-correcting matching
01 natural sciences
010305 fluids & plasmas
law.invention
Combinatorics
Graph bandwidth
Graph power
law
Bipartite matching
0103 physical sciences
Clique-width
Line graph
Bipartite graph
Hungarian algorithm
010306 general physics
Graph operations
Graph edit distance
MathematicsofComputing_DISCRETEMATHEMATICS
Mathematics
Subjects
Details
- Language :
- English
- ISBN :
- 978-3-319-58960-2
- ISBNs :
- 9783319589602
- Database :
- OpenAIRE
- Journal :
- Lecture Notes in Computer Science, 11th IAPR-TC-15 International Workshop on Graph-Based Representation in Pattern Recognition (GbRPR 2017), 11th IAPR-TC-15 International Workshop on Graph-Based Representation in Pattern Recognition (GbRPR 2017), Pasquale Foggia, May 2017, AnaCapri, Italy. pp.118-127, ⟨10.1007/978-3-319-58961-9_11⟩, Graph-Based Representations in Pattern Recognition ISBN: 9783319589602, GbRPR
- Accession number :
- edsair.doi.dedup.....3b19b37c5cdda51d41cc9d50d9c96c99
- Full Text :
- https://doi.org/10.1007/978-3-319-58961-9_11⟩