Back to Search
Start Over
Post-lie algebras and isospectral flows
- Source :
- Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
- Publication Year :
- 2015
-
Abstract
- In this paper we explore the Lie enveloping algebra of a post-Lie algebra derived from a classical R-matrix. An explicit exponential solution of the corresponding Lie bracket flow is presented. It is based on the solution of a post-Lie Magnus-type differential equation. publishedVersion
- Subjects :
- ÁLGEBRA
isospectral flow equation
FOS: Physical sciences
Universal enveloping algebra
Lie superalgebra
Mathematical Physics (math-ph)
Mathematics - Rings and Algebras
Magnus expansion
Affine Lie algebra
Graded Lie algebra
Lie conformal algebra
Algebra
Adjoint representation of a Lie algebra
R-matrix
Rings and Algebras (math.RA)
Lie bracket of vector fields
Lie algebra
FOS: Mathematics
Geometry and Topology
post-Lie algebra
Analysis
Mathematical Physics
Mathematics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
- Accession number :
- edsair.doi.dedup.....3aa405ed2f9b8528354365791260fb03