Back to Search Start Over

Exact and approximate resolution of integral multiflow and multicut problems: algorithms and complexity

Authors :
Cédric Bentz
CEDRIC. Optimisation Combinatoire (CEDRIC - OC)
Centre d'études et de recherche en informatique et communications (CEDRIC)
Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)
Source :
4OR: A Quarterly Journal of Operations Research, 4OR: A Quarterly Journal of Operations Research, Springer Verlag, 2008, 6, pp.89-92
Publication Year :
2007
Publisher :
Springer Science and Business Media LLC, 2007.

Abstract

This is a summary of the author’s PhD thesis supervised by Marie- Christine Costa and Frederic Roupin and defended on 20 November 2006 at the Conservatoire National des Arts et Metiers in Paris (France). The thesis is written in French and is available upon request from the author. This work deals with two well-known optimization problems from graph theory: the maximum integral multiflow and the minimum multicut problems. The main contributions of this thesis concern the polynomial-time solvability and the approximation of these two problems (and of some of their variants) in classical classes of graphs: bounded tree-width graphs, planar graphs and grids, digraphs, etc.

Details

ISSN :
16142411 and 16194500
Volume :
6
Database :
OpenAIRE
Journal :
4OR
Accession number :
edsair.doi.dedup.....3aa0eb69e88029f02f3fbddb7a2f05e2
Full Text :
https://doi.org/10.1007/s10288-007-0040-x