Back to Search Start Over

Combining multiple data sets to unravel the spatio-temporal dynamics of a data-limited fish stock

Authors :
Cecilia Pinto
Youen Vermard
Etienne Rivot
Morgane Travers-Trolet
Jed I. Macdonald
Département Sciences et Technologies Halieutiques / Laboratoire Technologie Halieutique (Ifremer) (STH - LTH)
Unité de recherche Sciences et Technologies Halieutiques (STH)
Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)
Faculty of Life and Environmental Sciences
University of Iceland [Reykjavik]
Écologie et santé des écosystèmes (ESE)
Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Institut Français de Recherche pour l'Exploitation de la Mer - Atlantique (IFREMER Atlantique)
Institut Français de Recherche pour l'Exploitation de la Mer - Nantes (IFREMER Nantes)
Université de Nantes (UN)
Líf- og umhverfisvísindadeild (HÍ)
Faculty of Life and Environmental Sciences (UI)
Verkfræði- og náttúruvísindasvið (HÍ)
School of Engineering and Natural Sciences (UI)
Háskóli Íslands
University of Iceland
Source :
Canadian Journal of Fisheries and Aquatic Sciences, Canadian Journal of Fisheries and Aquatic Sciences, NRC Research Press, 2019, 76 (8), pp.1338-1349. ⟨10.1139/cjfas-2018-0149⟩, Canadian Journal Of Fisheries And Aquatic Sciences (0706-652X) (Canadian Science Publishing), 2019-08, Vol. 76, N. 8, P. 1338-1349
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

Publisher's version (útgefin grein)<br />The biological status of many commercially exploited fishes remains unknown, mostly due to a lack of data necessary for their assessment. Investigating the spatiotemporal dynamics of such species can lead to new insights into population processes and foster a path towards improved spatial management decisions. Here, we focused on striped red mullet (Mullus surmuletus), a widespread yet data-limited species of high commercial importance. Aiming to quantify range dynamics in this data-poor scenario, we combined fishery-dependent and -independent data sets through a series of Bayesian mixed-effects models designed to capture monthly and seasonal occurrence patterns near the species’ northern range limit across 20 years. Combining multiple data sets allowed us to cover the entire distribution of the northern population of M. surmuletus, exploring dynamics at different spatiotemporal scales and identifying key environmental drivers (i.e., sea surface temperature, salinity) that shape occurrence patterns. Our results demonstrate that even when process and (or) observation uncertainty is high, or when data are sparse, if we combine multiple data sets within a hierarchical modelling framework, accurate and useful spatial predictions can still be made.<br />CP’s postdoc was funded by Ifremer and France Filière Peche. The authors thank Bruno Ernande for suggestions and comments that improved the work during the analysis. The authors also thank two anonymous reviewers for their comments, which helped to improve the manuscript.

Details

Language :
English
ISSN :
0706652X and 12057533
Database :
OpenAIRE
Journal :
Canadian Journal of Fisheries and Aquatic Sciences, Canadian Journal of Fisheries and Aquatic Sciences, NRC Research Press, 2019, 76 (8), pp.1338-1349. ⟨10.1139/cjfas-2018-0149⟩, Canadian Journal Of Fisheries And Aquatic Sciences (0706-652X) (Canadian Science Publishing), 2019-08, Vol. 76, N. 8, P. 1338-1349
Accession number :
edsair.doi.dedup.....3a8dabb4a4fc911582bbafc48a534732