Back to Search Start Over

Lysophosphatidic acid-1-receptor targeting agents for fibrosis

Authors :
Jean-Philippe Pradere
Philippe Valet
Julie Klein
Jean-Sébastien Saulnier-Blache
Joost P. Schanstra
Chloé Rancoule
Jean-Loup Bascands
Julien Gonzalez
Institut des Maladies Métaboliques et Cardiovasculaires (I2MC)
Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)
Department of medicine
Columbia University [New York]-College of Physicians and Surgeons
Simon, Marie Francoise
Source :
Expert Opinion on Investigational Drugs, Expert Opinion on Investigational Drugs, Taylor & Francis, 2011, 20 (5), pp.657-67. ⟨10.1517/13543784.2011.566864⟩, Expert Opinion on Investigational Drugs, 2011, 20 (5), pp.657-67. ⟨10.1517/13543784.2011.566864⟩
Publication Year :
2011
Publisher :
HAL CCSD, 2011.

Abstract

International audience; INTRODUCTION: The presence of fibrosis is associated with alterations in organ architecture and is responsible for the morbidity of diseases including pneumopathies, systemic sclerosis, liver cirrhosis, chronic cardiovascular diseases, progressive kidney diseases and diabetes. Although a growing number of pro-fibrotic molecules, mediators and other pathways have been reported, there are currently very few antifibrotic molecules being evaluated in clinical trials. AREAS COVERED: Current knowledge about the contribution of lysophosphatidic acid (LPA), a bioactive mediator acting via specific G-protein coupled receptors (LPAR), in the etiology of fibrosis. In a number of organs, fibrosis is associated with increased LPA production as well as with increased expression of some LPAR subtypes (mainly LPA1R). LPAR(-/-) knockout mice and treatment of animal models with specific antagonists clearly demonstrate the contribution of LPA1R subtype to the development of kidney, lung, vascular and dermal fibrosis. The involvement of LPA in liver fibrosis is also strongly suspected but still unproven. EXPERT OPINION: Experiments in animal models clearly demonstrate that LPA1R antagonists have interesting anti-fibrotic potencies. This reveals promising perspectives for the design of new therapeutic approaches to prevent fibrosis-associated diseases. Nevertheless, the number of efficient LPA1R antagonists currently available is still low, and none of them has been used in clinical trials so far.

Details

Language :
English
ISSN :
13543784 and 17447658
Database :
OpenAIRE
Journal :
Expert Opinion on Investigational Drugs, Expert Opinion on Investigational Drugs, Taylor & Francis, 2011, 20 (5), pp.657-67. ⟨10.1517/13543784.2011.566864⟩, Expert Opinion on Investigational Drugs, 2011, 20 (5), pp.657-67. ⟨10.1517/13543784.2011.566864⟩
Accession number :
edsair.doi.dedup.....3a36554831b5204ccb8bd1ca3fbf2cb1