Back to Search Start Over

Predicting future cognitive decline from non-brain and multimodal brain imaging data in healthy and pathological aging

Authors :
Hebling Vieira, Bruno
Liem, Franziskus
Dadi, Kamalaker
Engemann, Denis A
Gramfort, Alexandre
Bellec, Pierre
Craddock, Richard Cameron
Damoiseaux, Jessica S
Steele, Christopher J
Yarkoni, Tal
Langer, Nicolas
Margulies, Daniel S
Varoquaux, Gael
Universität Zürich [Zürich] = University of Zurich (UZH)
Modèles et inférence pour les données de Neuroimagerie (MIND)
IFR49 - Neurospin - CEA
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université du Québec à Montréal = University of Québec in Montréal (UQAM)
The University of Texas Medical Branch (UTMB)
Wayne State University [Detroit]
Concordia University [Montreal]
The University of Texas Medical School at Houston
Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Méthodes computationnelles et mathématiques pour comprendre la société et la santé à partir de données (SODA)
Inria Saclay - Ile de France
ANR-20-IADJ-0002,AI-cog,IA pour les sociétés touchées par le vieillissement: des concepts fondamentaux aux outils pratiques pour l'apprentissage cognitif facilité par l'IA(2020)
University of Zurich
Hebling Vieira, Bruno
Source :
Neurobiology of Aging, Neurobiology of Aging, 2022, 118, pp.55-65. ⟨10.1016/j.neurobiolaging.2022.06.008⟩, Neurobiology of Aging, 118
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

Previous literature has focused on predicting a diagnostic label from structural brain imaging. Since subtle changes in the brain precede a cognitive decline in healthy and pathological aging, our study predicts future decline as a continuous trajectory instead. Here, we tested whether baseline multimodal neuroimaging data improve the prediction of future cognitive decline in healthy and pathological aging. Nonbrain data (demographics, clinical, and neuropsychological scores), structural MRI, and functional connectivity data from OASIS-3 (N = 662; age = 46–96 years) were entered into cross-validated multitarget random forest models to predict future cognitive decline (measured by CDR and MMSE), on average 5.8 years into the future. The analysis was preregistered, and all analysis code is publicly available. Combining non-brain with structural data improved the continuous prediction of future cognitive decline (best test-set performance: R2 = 0.42). Cognitive performance, daily functioning, and subcortical volume drove the performance of our model. Including functional connectivity did not improve predictive accuracy. In the future, the prognosis of age-related cognitive decline may enable earlier and more effective individualized cognitive, pharmacological, and behavioral interventions.<br />Neurobiology of Aging, 118<br />ISSN:0197-4580<br />ISSN:1558-1497

Details

Language :
English
ISSN :
01974580 and 15581497
Database :
OpenAIRE
Journal :
Neurobiology of Aging, Neurobiology of Aging, 2022, 118, pp.55-65. ⟨10.1016/j.neurobiolaging.2022.06.008⟩, Neurobiology of Aging, 118
Accession number :
edsair.doi.dedup.....3a27c4834e9dbccc539484d790a1d05d
Full Text :
https://doi.org/10.1016/j.neurobiolaging.2022.06.008⟩