Back to Search Start Over

Explaining inter-annual variability of gross primary productivity from plant phenology and physiology

Explaining inter-annual variability of gross primary productivity from plant phenology and physiology

Authors :
Yiqi Luo
Sha Zhou
Philippe Ciais
Kelly K. Caylor
Xiangming Xiao
Yuefei Huang
Yao Zhang
Guangqian Wang
State Key Laboratory of Hydroscience and Engineering [Beijing]
Tsinghua University [Beijing] (THU)
Princeton University
University of Oklahoma (OU)
ICOS-ATC (ICOS-ATC)
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Qinghai Normal University
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Source :
Agricultural and Forest Meteorology, Agricultural and Forest Meteorology, 2016, 226-227, pp.246-256. ⟨10.1016/j.agrformet.2016.06.010⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

Climate variability influences both plant phenology and physiology, resulting in inter-annual variation in terrestrial gross primary productivity (GPP). However, it is still difficult to explain the inter-annual variability of GPP. In this study, we propose a Statistical Model of Integrated Phenology and Physiology (SMIPP) to explain the contributions of maximum daily GPP (GPP max ), and start and end of the growing season (GS start and GS end ) to the inter-annual variability of GPP observed at 27 sites across North America and Europe. Strong relationships are found between the anomalies of GS start and spring GPP (r = 0.82 ± 0.10), GPP max and summer GPP (r = 0.90 ± 0.14), and GS end and autumn GPP (r = 0.75 ± 0.18) within each site. Partial correlation analysis further supports strong correlations of annual GPP with GS start (partial r value being 0.72 ± 0.20), GPP max (0.87 ± 0.15), and GS end (0.59 ± 0.26), respectively. In addition, the three indicators are found independent from each other to influence annual GPP at most of the 27 sites. Overall, the site-calibrated SMIPP explains 90 ± 11% of the annual GPP variability among the 27 sites. In general, GPP max contributes to annual GPP variation more than the two phenological indicators. These results indicate that the inter-annual variability of GPP can be effectively estimated using the three indicators. Investigating plant physiology, and spring and autumn phenology to environmental changes can improve the prediction of the annual GPP trajectory under future climate change.

Details

Language :
English
ISSN :
01681923
Database :
OpenAIRE
Journal :
Agricultural and Forest Meteorology, Agricultural and Forest Meteorology, 2016, 226-227, pp.246-256. ⟨10.1016/j.agrformet.2016.06.010⟩
Accession number :
edsair.doi.dedup.....3a25ef85b4b1980d1bab2ed268c7b4e5
Full Text :
https://doi.org/10.1016/j.agrformet.2016.06.010⟩