Back to Search Start Over

On self-adjoint operators in Krein spaces constructed by Clifford algebra Cl_{2}

Authors :
Olexiy Patsyuck
Sergii Kuzhel
Source :
Opuscula Mathematica, Vol 32, Iss 2, Pp 297-316 (2012), Opuscula Mathematica
Publication Year :
2012
Publisher :
AGH Univeristy of Science and Technology Press, 2012.

Abstract

Let \(J\) and \(R\) be anti-commuting fundamental symmetries in a Hilbert space \(\mathfrak{H}\). The operators \(J\) and \(R\) can be interpreted as basis (generating) elements of the complex Clifford algebra \(Cl_2(J,R):=\text{span}\{I,J,R,iJR\}\). An arbitrary non-trivial fundamental symmetry from \(Cl_2(J,R)\) is determined by the formula \(J_{\vec{\alpha}}=\alpha_1 J +\alpha_2 R+\alpha_3 iJR\), where \(\vec{\alpha} \in \mathbb{S}^2\). Let \(S\) be a symmetric operator that commutes with \(Cl_2(J,R)\). The purpose of this paper is to study the sets \(\Sigma_{J_{\vec{\alpha}}}\) (\(\forall \vec{\alpha} \in \mathbb{S}^2\)) of self-adjoint extensions of \(S\) in Krein spaces generated by fundamental symmetries \(J_{\vec{\alpha}}\) (\(J_{\vec{\alpha}}\)-self-adjoint extensions). We show that the sets \(\Sigma_{J_{\vec{\alpha}}}\) and \(\Sigma_{J_{\vec{\beta}}}\) are unitarily equivalent for different \(\vec{\alpha}, \vec{\beta} \in \mathbb{S}^2\) and describe in detail the structure of operators \(A \in \Sigma_{J_{\vec{\alpha}}}\) with empty resolvent set.

Details

Language :
English
ISSN :
12329274
Volume :
32
Issue :
2
Database :
OpenAIRE
Journal :
Opuscula Mathematica
Accession number :
edsair.doi.dedup.....3a0be401429b575291cfbc19fe519b50