Back to Search
Start Over
On self-adjoint operators in Krein spaces constructed by Clifford algebra Cl_{2}
- Source :
- Opuscula Mathematica, Vol 32, Iss 2, Pp 297-316 (2012), Opuscula Mathematica
- Publication Year :
- 2012
- Publisher :
- AGH Univeristy of Science and Technology Press, 2012.
-
Abstract
- Let \(J\) and \(R\) be anti-commuting fundamental symmetries in a Hilbert space \(\mathfrak{H}\). The operators \(J\) and \(R\) can be interpreted as basis (generating) elements of the complex Clifford algebra \(Cl_2(J,R):=\text{span}\{I,J,R,iJR\}\). An arbitrary non-trivial fundamental symmetry from \(Cl_2(J,R)\) is determined by the formula \(J_{\vec{\alpha}}=\alpha_1 J +\alpha_2 R+\alpha_3 iJR\), where \(\vec{\alpha} \in \mathbb{S}^2\). Let \(S\) be a symmetric operator that commutes with \(Cl_2(J,R)\). The purpose of this paper is to study the sets \(\Sigma_{J_{\vec{\alpha}}}\) (\(\forall \vec{\alpha} \in \mathbb{S}^2\)) of self-adjoint extensions of \(S\) in Krein spaces generated by fundamental symmetries \(J_{\vec{\alpha}}\) (\(J_{\vec{\alpha}}\)-self-adjoint extensions). We show that the sets \(\Sigma_{J_{\vec{\alpha}}}\) and \(\Sigma_{J_{\vec{\beta}}}\) are unitarily equivalent for different \(\vec{\alpha}, \vec{\beta} \in \mathbb{S}^2\) and describe in detail the structure of operators \(A \in \Sigma_{J_{\vec{\alpha}}}\) with empty resolvent set.
- Subjects :
- Resolvent set
General Mathematics
lcsh:T57-57.97
010102 general mathematics
Clifford algebra
Mathematical analysis
Nuclear Theory
Operator theory
01 natural sciences
Krein spaces
Combinatorics
\(J\)-self-adjoint operators
operators with empty resolvent set
0103 physical sciences
Homogeneous space
lcsh:Applied mathematics. Quantitative methods
Clifford algebra \(Cl_2\)
extension theory of symmetric operators
0101 mathematics
010306 general physics
Nuclear Experiment
Self-adjoint operator
Mathematics
Symmetric operator
Subjects
Details
- Language :
- English
- ISSN :
- 12329274
- Volume :
- 32
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Opuscula Mathematica
- Accession number :
- edsair.doi.dedup.....3a0be401429b575291cfbc19fe519b50